Breakthrough: Transcribing entanglement into and out of quantum memory

to connect two distant systems, but these particles of light are difficult to store because of their small interactions with matter when taken one by one. A quantum memory for light is an essential ingredient for achieving scalable quantum networks with photons. Choi says. “The question is now, ‘How do you change the entangled state of light into an entanglement of matter and back into light?’” This was not possible for any physical system until now. The new work, Choi says, “is a proof-of-principle demonstration that entanglement between material systems can be generated deterministically by mapping the entanglement of light to and from two spatially separated quantum memories.” The Caltech team separated the processes for generating and storing the entanglement, thereby breaking a previous inherent link between the quality and probability of state preparation. “In a general context, our work represents an important step in laboratory capabilities for the creation and manipulation of entangled states of light and matter. We hope that our results will be useful as a tool in the effort to realize quantum repeaters and thereby scalable quantum networks over long distances,” remarks Kimble.

In the Caltech experiment, a single photon is first split, generating an entangled state of light with quantum amplitudes for the photon to propagate two distinct paths, taking both at once. The Caltech team in turn transcribed, or mapped, the entanglement onto distinct atomic ensembles separated by one millimeter. To create the interface between the light and matter, the team employed laser-cooled cesium atoms whose atomic states interact with a control laser to create destructive quantum interference, making the atomic ensembles either invisible or highly opaque to the input light. Called Electromagnetically Induced Transparency and pioneered by S. Harris at Stanford University, the mechanism manipulates the speed of the light for the incoming entangled photon and that kicks off the entire procedure. “We can reduce the speed of light to the speed of a train, and then in fact stop the light inside the matter by slowly turning off the control laser, where now the quantum information—the entangled state of light—is stored inside the atomic ensembles,” Choi describes. “By turning on the control laser again, we can reversibly accelerate the ‘stopped’ light back to the speed of light and restore the quantum entanglement as propagating beams of light.”

In this experiment, the photonic entanglement was mapped into the atomic ensembles in a time ~ 20 nanoseconds and then stored in the atomic ensembles for one microsecond, with storage times extendable up to 10 microseconds. The photonic entanglements of the input and output of the quantum interface were explicitly quantified with a conversion efficiency of 20 percent. The researchers emphasize, however, that real-world realization of a quantum network remains far out of reach even with these parameters and the state-of-the-art of quantum controls. Choi comments, “Further improvements in quantum control and storage capabilities in matter-light interfaces will lead to fruitful and exciting discoveries in Quantum Information Science, including for the realization of quantum networks.”

-read more in K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping Photonic Entanglement into and out of a Quantum Memory,” Nature 452, (6 March 2008) (doi:10.1038/nature06670): 67-71 (sub. req.)