• Nuclear disastersU.S. nuclear watchdog greatly underestimates potential for nuclear disaster

    The U.S. Nuclear Regulatory Commission (NRC) relied on faulty analysis to justify its refusal to adopt a critical measure for protecting Americans from the occurrence of a catastrophic nuclear-waste fire at any one of dozens of reactor sites around the country, a new study shows. Fallout from such a fire could be considerably larger than the radioactive emissions from the 2011 Fukushima accident in Japan. These catastrophic consequences, which could be triggered by a large earthquake or a terrorist attack, could be largely avoided by regulatory measures that the NRC refuses to implement.

  • Radiation detectionMobile phones can reveal exposure to radiation

    In accidents or terror attacks which are suspected to involve radioactive substances, it can be difficult to determine whether people nearby have been exposed to radiation. But by analyzing mobile phones and other objects which come in close contact with the body, it is possible to retrieve important information on radiation exposure.

  • Nuclear forensicsNew nuclear forensics signature discovery capability to help trace origins of plutonium

    Two weeks ago the Department of Homeland Security’s Domestic Nuclear Detection Office (DNDO) joined with partners at the Pacific Northwest National Laboratory (PNNL) to launch the Plutonium Processing Signatures Discovery capability. The new capability, the result of a four-year effort, represents a significant technological advancement in nuclear forensics that will improve our ability to trace the origins of plutonium. Nuclear forensics involves determining where illicit or smuggled radioactive material came from. In the event of a nuclear weapon detonation, knowing where radioactive material came from can help investigators determine who’s responsible.

  • Nuclear waste“Fishing out” radioactive elements from nuclear waste

    Scientists have revealed how arsenic molecules might be used to “fish out” the most toxic elements from radioactive nuclear waste — a breakthrough that could make the decommissioning industry even safer and more effective. “Nuclear power could potentially produce far less carbon dioxide than fossil fuels, but the long-lived waste it produces is radioactive and needs to be handled appropriately,” one scientists said.

  • Radiation detectionDetecting weapons-grade uranium from afar

    It is hard enough to identify nuclear materials when you can directly scan a suspicious suitcase or shipping container. But if you cannot get close? A technique for detecting enriched uranium with lasers could help regulators sniff out illicit nuclear activities from as far as a couple of miles away.

  • Radiation detectionRadiation threat detection system successfully tested in Washington, D.C.

    DARPA’s SIGMA program — whose goal is to prevent attacks involving radiological “dirty bombs” and other nuclear threats — concluded its biggest and longest test deployment of vehicle-mounted radiation detectors in Washington, D.C., in February. For approximately seven months starting in July 2016, the fleet of D.C. Fire and Emergency Medical Services ambulances was outfitted with DARPA-developed nuclear and radiological detectors, providing the first city-scale, dynamic, real-time map of background radiation levels throughout the Capital as well as identifying any unusual spikes that could indicate a threat.

  • Nuclear wastePreventing nuclear waste seepage

    Nuclear waste is a reality, whether remnants of nuclear weapons or the byproducts of nuclear power plants. While we aren’t at risk of an attack from a giant radioactive lizard, nuclear waste can still pose threats to human health. The best way to safely store and contain nuclear waste is by mixing it into a cement grout and storing it in large concrete vaults. Researchers are testing the permeability of these grout mixtures and in turn, the ability for nuclear materials to eventually flow through the solidified grout and into the environment.

  • Nuclear risksSystem automatically detects cracks in steel components of nuclear power plants

    The United States operates 99 commercial nuclear power plants, which account for about 20 percent of total U.S. electricity generation. Aging can result in cracking, fatigue, embrittlement of metal components, wear, erosion, corrosion and oxidation. Researchers have developed a new automated system which detects cracks in the steel components of nuclear power plants and has been shown to be more accurate than other automated systems.

  • Radiation risksNY’s Indian Point nuclear plant to close after many “safety events”

    New York’s Indian Point nuclear power plant will close by April 2021, Governor Andrew Cuomo said on Monday. “For fifteen years, I have been deeply concerned by the continuing safety violations at Indian Point, especially given its location in the largest and most densely populated metropolitan region in the country,” Cuomo said. “I am proud to have secured this agreement with Entergy [the plant’s operator] to responsibly close the facility fourteen years ahead of schedule, to protect the safety of all New Yorkers.”

  • IranFormer IAEA deputy director criticizes nuclear agency’s Iran investigations

    Olli Heinonen, the former deputy director-general of the International Atomic Energy Agency has criticized the agency for “reduc[ing] the level of transparency and details in its reporting” on Iran’s nuclear program, making it “practically impossible” to confirm that Iran is complying with the terms of the nuclear deal.

  • Radiation detectionSandia’s radiation security team helps protect the public in large events

    Sandia National Laboratories’ Radiological Assistance Program (RAP) team is one of several Department of Energy (DOE)/National Nuclear Security Administration (NNSA) teams in nine U.S. regions. The teams provide radiological detection support for large public events in Kansas, Oklahoma, Texas, New Mexico, and Arizona. They also help with major public events around the United States, such as Super Bowls or visits from the pope.

  • Radiation detectionExercising the U.S. nuclear forensics capabilities

    The Domestic Nuclear Detection Office (DNDO) plays an important role in the field of nuclear forensics. In addition to advancing technical capabilities and supporting expertise development, DNDO coordinates with other partners to exercise the U.S. government’s ability to collect nuclear debris samples in the event of a detonation and transport them to laboratories for analysis.

  • Nuclear waste Immobilizing radioactive waste in glass for millions of years

    How do you handle nuclear waste that will be radioactive for millions of years, keeping it from harming people and the environment? It is not easy, but researchers have discovered ways to immobilize such waste – the offshoot of decades of nuclear weapons production – in glass and ceramics.

  • ForensicsNuclear CSI: Noninvasive procedure could spot criminal nuclear activity

    Determining whether an individual – a terrorist, a smuggler, a criminal — has handled nuclear materials, such as uranium or plutonium, is a challenge national defense agencies currently face. The standard protocol to detect uranium exposure is through a urine sample; however, urine is able only to identify those who have been recently exposed. Scientists have developed a noninvasive procedures that will better identify individuals exposed to uranium within one year.

  • Nuclear wasteNanomaterials help solve the problem of nuclear waste

    In the last decades, nanomaterials have gained broad scientific and technological interest due to their unusual properties compared to micrometer-sized materials. Nuclear fuels production, structural materials, separation techniques, and waste management may all benefit from more knowledge in the nano-nuclear technology.