• Nuclear powerMIT Energy Initiative study reports on the future of nuclear energy

    By Francesca McCaffrey

    How can the world achieve the deep carbon emissions reductions that are necessary to slow or reverse the impacts of climate change? The authors of a new MIT study say that unless nuclear energy is meaningfully incorporated into the global mix of low-carbon energy technologies, the challenge of climate change will be much more difficult and costly to solve. For nuclear energy to take its place as a major low-carbon energy source, however, issues of cost and policy need to be addressed.

  • Nuclear safetyNuclear safety board slams Energy Department plan to weaken oversight

    By Rebecca Moss

    The Trump administration defended an order that could be used to withhold information about nuclear facilities from a federal board, but its leader says the action is not consistent with the U.S. Atomic Energy Act.

  • Climate threats & nuclear plantsWhat are coastal nuclear power plants doing to address climate threats?

    By John Vidal

    Flooding can be catastrophic to a nuclear power plant because it can knock out its electrical systems, disabling its cooling mechanisms and leading to overheating and possible meltdown and a dangerous release of radioactivity. At least 100 U.S., European and Asian nuclear power stations built just a few meters above sea level could be threatened by serious flooding caused by accelerating sea-level rise and more frequent storm surges. More than 20 flooding incidents have been recorded at U.S. nuclear plants since the early 1980s. A number of scientific papers published in 2018 suggest that climate change will impact coastal nuclear plants earlier and harder than the industry, governments, or regulatory bodies have expected, and that the safety standards set by national nuclear regulators and the IAEA are out of date and take insufficient account of the effects of climate change on nuclear power.

  • Nuclear wasteNuclear waste: The cost to Americans is in the billions

    Since the Manhattan Project officially began in 1942, the United States has faced ever-increasing stores of nuclear waste. Stanford’s Rodney Ewing says that the U.S. failure to implement a permanent solution for nuclear waste storage and disposal is costing Americans billions of dollars a year.

  • Next gen & nuclear energyLooking to millennials for new nuclear energy inspiration, conversation

    The torch of nuclear energy may be passing to a new generation: On 15 June, Idaho National Laboratory hosted a Millennial Nuclear Caucus, the latest to be held across the country since October 2017. The majority of participants were young interns and researchers from the lab, but young people from across the community were invited to attend.

  • Next gen & nuclear energyMaking nuclear energy safer and more affordable

    By Fatima Husain

    Galvanized by the Fukushima Daiichi nuclear disasters, MIT Ph.D. student Xingang Zhao envisions a future with safe, efficient nuclear power. Pressurized water reactors, which generate the majority of the electricity derived from nuclear power worldwide, are operating at parameters that are too conservative, compromising efficiency and energy output. Zhao suspects that under some scenarios traditional models that calculate critical heat flux place it too low, meaning that the current nuclear reactor fleets are operating well under capacity.

  • Nuclear safetyGreenpeace France crashes drone at French nuclear plant

    Greenpeace France said Tuesday it had flown the drone – remotely piloted by one of its activists – over Bugey nuclear plant near Lyon, France. The pilot then crashed the Superman-shaped drone against the wall of the facility’s spent-fuel pool building. This is not the first stunt by the environmental group at a French nuclear plant. The groups says it aims to expose the vulnerabilities of nuclear plants to terrorist attacks and accidents.

  • Nuclear powerThe nuclear industry is making a big bet on small power plants

    By Scott L. Montgomery

    Until now, generating nuclear power has required massive facilities surrounded by acres of buildings, electrical infrastructure, roads, parking lots and more. The nuclear industry is trying to change that picture – by going small. Efforts to build the nation’s first “advanced small modular reactor,” or SMR, in Idaho, are on track for it to become operational by the mid-2020s. The debate continues over whether this technology is worth pursuing, but the nuclear industry isn’t waiting for a verdict. Nor, as an energy scholar, do I think it should. This new generation of smaller and more technologically advanced reactors offer many advantages, including an assembly-line approach to production, vastly reduced meltdown risks and greater flexibility in terms of where they can be located, among others.

  • DenuclearizationPhasing out nuclear energy could affect safety: Psychologists

    The way in which the phase-out of nuclear power plants in Germany is currently planned could negatively influence the safety of the facilities. Those involved could increasingly favor their own interests as the shutdown date approaches, a new study argues. They base their argument on the possibility of endgame behavior from game theory.

  • Nuclear wasteThe federal government has long treated Nevada as a dumping ground, and it’s not just Yucca Mountain

    By Michael Green

    Nevadans can be forgiven for thinking they are in an endless loop of “The Walking Dead” TV series. Their least favorite zombie federal project refuses to die. In 2010, Congress had abandoned plans to turn Yucca Mountain, about 100 miles northwest of Las Vegas, into the nation’s only federal dump for nuclear waste so radioactive it requires permanent isolation. And the House recently voted by a wide margin to resume these efforts. While teaching and writing about the state’s history for more than 30 years, I have followed the Yucca Mountain fight from the beginning – as well as how Nevadans’ views have evolved on all things nuclear. The project could well go forward, but I believe that it probably won’t as long as there are political benefits to stopping it.

  • Radiation risksFukushima-Daiichi radioactive particle release was significant: Study

    Scientists say there was a significant release of radioactive particles during the Fukushima-Daiichi nuclear accident. The researchers identified the contamination using a new method and say if the particles are inhaled they could pose long-term health risks to humans.

  • Nuclear wasteScientists successfully vitrify three gallons of radioactive tank waste

    In a first-of-its-kind demonstration, researchers at the Department of Energy’s Pacific Northwest National Laboratory have vitrified low-activity waste from underground storage tanks at Hanford, immobilizing the radioactive and chemical materials within a durable glass waste form.

  • Nuclear decommissioningPipe-crawling robot to help decommission nuclear facility

    A pair of autonomous robots will soon drive through miles of pipes at the U.S. Department of Energy’s former uranium enrichment plant in Piketon, Ohio, to identify uranium deposits on pipe walls. Shuttered since 2000, the plant began operations in 1954 and produced enriched uranium, including weapons-grade uranium. With 10.6 million square feet of floor space, it is DOE’s largest facility under roof — the size of 158 football fields, with 75 miles of process pipe.

  • Nuclear wasteNuclear waste may soon be a thing of the past

    During the Cold War, the U.S. Department of Energy produced tons of nuclear material for the development of the nation’s nuclear weapons stockpile. Today, the United States is awash in radioactive material from weapons production and some from nuclear power plants that could take 100,000 years to go away. A recent FIU chemistry graduate might help researchers unlock the secrets to make nuclear waste safer.

  • Nuclear detection Remotely monitoring nuclear reactorsRemotely monitoring nuclear reactors

    A new U.S. Department of Energy project to develop the first detector able to remotely monitor nuclear reactors will also help physicists test the next generation of neutrino observatories. Nuclear reactions produce telltale antineutrinos – the antimatter counterpart of neutrinos. The new detectors will be designed to measure the energy of such antineutrinos and the direction from which they come, allowing monitoring of reactors from a distance of 25 kilometers to verify nonproliferation agreements.