Universal vaccines would allow wide-scale flu prevention

of these vaccine trials, and the very latest and best models of influenza virus evolution and epidemiology. They put those together and asked important and relevant questions about how this new vaccine would actually play out.

They give very clear insights about what the impact of these vaccines would be,” he said. “In doing so, this work provides incentive for the vaccine manufacturers to continue this research and development, and it provides some guidance for public health authorities to think about using these new vaccines once they become available.”

Arinaminpathy and his colleagues developed their model using an archetype of the universal vaccine.

The release quotes Arinaminpathy to say that in recent years, outbreaks of potent flu strains — such as avian flu in 2003 — and advances in biotechnology have spurred research teams at pharmaceutical companies and government organizations such as the National Institutes of Health to work on cross-protective vaccines.

Projections for a publicly available vaccine range from one to five years.

Current flu vaccines are produced to counter the influenza strains that the World Health Organization predicts will dominate a particular flu season. Inoculation typically focuses on protecting people who are vulnerable to the virus. However, this approach does not provide long-term or widespread immunity, Arinaminpathy said. The flu virus is always evolving, and so vaccines need to be updated each year.

The reason is that these vaccines zero in on hemagglutinin (HA), proteins protruding from the virus’ surface that allow it to attach to and invade host cells. Small mutations in these highly adaptive appendages can create new versions of the virus that often are invulnerable to the vaccine designed for their former selves, a tactic known as “immune escape.”

Universal vaccines instead bypass the protruding HA surface to target more constant proteins with less evolutionary flair, Arinaminpathy said. Because HAs are still active, the virus may still infect people, but it cannot wreak the same havoc.

The various universal vaccines being developed target different viral components, but they all have the potential to slow viral transmission across many flu variants, Arinaminpathy said. The researchers used that overarching feature in their model vaccine. The researchers then simulated the effectiveness of their basic universal vaccine in two types of flu outbreak: pandemic and epidemic.

A flu pandemic — the sudden and rapid spread of a new, highly contagious strain — is difficult to predict and typically impossible to control through vaccination alone, Arinaminpathy said. Universal vaccines,