Dry-run experiments confirm key aspect of Sandia nuclear fusion concept

present because the metallic liner doing the compressing is also being eaten away as it conducts the Z machine’s enormous electrical current along its outer surface.

This electrical current generates the corresponding magnetic field that crushes the liner, but under the stress of passing that current, the outer surface of the liner begins to vaporize and turn into plasma, in much the same way as a car fuse vaporizes when a short circuit sends too much current through it. As this happens, the surface begins to lose integrity and becomes unstable.

This instability works its way inward, toward the liner’s inner surface, throughout the course of the implosion.

“You might say: The race is on,” said McBride. “The question is, can we start off with a thick enough tube such that we can complete the implosion and burn the fusion fuel before the instability eats its way completely through the liner wall?

“A thicker tube would be more robust in standing up to this instability, but the implosion would be less efficient because Z would have to accelerate more liner mass. On the flip side, a thinner tube could be accelerated to a much higher implosion velocity, but then the instability would rip the liner to shreds and render it useless,” he continues. “Our experiments were designed to test a sweet spot predicted by the simulations where a sufficiently robust liner could implode with a sufficiently high velocity.”

By following the dimensions proposed by the earlier simulations, the physical test proved successful and the liner walls maintained their integrity throughout the implosion.

Radiographs taken at nanosecond intervals depicted the implosion of the initially solid beryllium liner through to stagnation — the point at which an implosion stops because the liner material has reached the cylinder’s central axis. The images show the outer surface of the imploding liner distorting until it resembles threads on a bolt. However, the more crucial inner surface remains reasonably intact all the way through to stagnation.

Said McBride’s manager Dan Sinars, “When Magnetized Liner Inertial Fusion was first proposed, our biggest concern was whether the instabilities would disrupt the target before fusion reactions could occur. We had complex computer simulations that suggested things would be OK, but we were not confident in those predictions. Then McBride did his experiments, using liners with the same dimensions as our simulations, and the outcomes matched. We are now confident enough to take the next steps on the Z facility of integrating in the new magnetic field and laser preheat capabilities that will be required to test the full concept. Consequently, we intend to take those first integration steps in 2013.”

Slated for December are the first tests of the final two components of the MagLIF concept: laser preheating to put more energy into the fuel before magnetic compression begins, and the testing of two secondary electrical coils placed at the top and bottom of the can. Their magnetic fields are expected to keep charged particles from escaping the hot fuel horizontally. This is crucial because if too many particles escape, the fuel could cool to the point where fusion reactions cease.

Sandia researchers intend to test the fully integrated MagLIF concept by the close of 2013.

“This work is one more step on a long path to possible energy applications,” said Sandia senior manager Mark Herrmann.

The liner implosion experiments also served to verify that simulation tools like the popular LASNEX code are accurate within certain parameters, but may diverge when used beyond those limits — information of importance to other labs that use the same codes.

McBride will give an invited talk on his work this fall at the American Physical Society’s annual Division of Plasma Physics meeting in Providence, Rhode Island. He is also preparing an invited paper for Physics of Plasmas to explain the PRL results in greater depth.

The work was funded by Sandia’s Laboratory Directed Research and Development program and the National Nuclear Security Administration.