System to vaporize asteroids that threaten Earth

and Hughes calculated the requirements and possibilities for DE-STAR systems of several sizes, ranging from a desktop device to one measuring ten kilometers, or six miles, in diameter. Larger systems were also considered. The larger the system, the greater its capabilities.

For instance, DE-STAR 2 — at 100 meters in diameter, about the size of the International Space Station — “could start nudging comets or asteroids out of their orbits,” Hughes said. DE-STAR 4, however — at ten kilometers in diameter, about 100 times the size of the ISS — could deliver 1.4 megatons of energy per day to its target, said Lubin, obliterating an asteroid 500 meters across in one year.

The speed of interplanetary travel — far beyond what is possible with chemical propellant rockets used today — could be increased with this sized system, according to Lubin. It could also power advanced ion drive systems for deep space travel, he said. Able to engage multiple targets and missions at once, DE-STAR 4 “could simultaneously evaporate an asteroid, determine the composition of another, and propel a spacecraft.”

Larger still, DE-STAR 6 could enable interstellar travel by functioning as a massive, orbiting power source and propulsion system for spacecraft. It could propel a 10-ton spacecraft at near the speed of light, allowing interstellar exploration to become a reality without waiting for science fiction technology such as “warp drive” to come along, Lubin said.

Our proposal assumes a combination of baseline technology — where we are today — and where we almost certainly will be in the future, without asking for any miracles,” he explained. “We’ve really tried to temper this with a realistic view of what we can do, and we approached it from that point of view. It does require very careful attention to a number of details, and it does require a will to do so, but it does not require a miracle.”

Recent and rapid developments in highly efficient conversion of electrical power to light allow such a scenario now, Lubin said, when just twenty years ago it would not have been realistic to consider.

These are not just back-of-the-envelope numbers,” Hughes concurred. “They are actually based on detailed analysis, through solid calculations, justifying what is possible. And it’s all available under current theory and current technology.

There are large asteroids and comets that cross the Earth’s orbit, and some very dangerous ones going to hit the Earth eventually,” he added. “Many have hit in the past and many will hit in the future. We should feel compelled to do something about the risk. Realistic solutions need to be considered, and this is definitely one of those.”

The release notes that three UCSB undergraduate students are assisting Lubin and Hughes with the DE-STAR project: Johanna Bible and Jesse Bublitz, both from the College of Creative Studies, and chemistry major Joshua Arriola.