Improving detection of, responses to biological warfare

DARPA program manager for ATP, explained the implications of the breakthroughs: “When you consider the locations of warfighters who have the most potential for biological weapons to be used against them, they are typically environments with extreme temperatures and harsh conditions, and the warfighters themselves are probably operating in small groups. If it’s going to be useful to these teams, DoD equipment needs to be ruggedized to survive conditions and be easy to use by non-experts. The ATP technology hits these goals.

“By removing temperature stability as a limiting factor, troops will now be able to carry sensors with them without worrying about refrigeration and wondering if the sensor will return an accurate reading. According to the Chemical Biological Medical Systems Joint Project Management Office at JPE-CBD, eliminating the need for cold-chain logistics in transport and deployment of sensors is estimated to save DoD in the range of $10 million per year,” Donlon said. “The new stability also means antibodies can be attached to new materials to make potentially more practical sensors to take the place of current beads and strips. Most importantly, by pairing more stable sensors with a huge increase in sensitivity, DARPA is giving troops the confidence to trust the results of what can be literally life-or-death measurements.”

ATP achieved these results by altering the amino acid sequences within the antibody molecules. Rather than creating an additive stabilizing material, ATP performers devised methods to make the altered amino acids an integral part of the structure of the antibody molecule.

“Antibody-based biosensors have been in use for roughly 30 years,” Donlon said. “DARPA used recent advances in understanding of protein structure and analysis to determine new ways to alter amino acids, integrate them into an antibody structure, and do so at a sustainable scale.”

The release notes that DARPA partnered with the U.S. Army’s Edgewood Chemical Biological Center (ECBC) from the beginning of ATP, to first assist with evaluation of performer research proposals, then later in the program to provide ATP performers with unaltered antibodies, conduct testing on the performers’ altered antibodies, and validate results. To ensure that the production methods for modifying antibodies are scalable and cost effective, performers had to submit one-gram samples for testing. The positive results mean that existing DoD antibody stockpiles can be altered to incorporate the new properties of stability and high affinity.

Program performers for ATP included: Affomix Corp. (Branford, Conn.), purchased by Illumina, Inc. (San Diego, Calif.); AnaptysBio, Inc. (San Diego, Calif.); the Naval Research Laboratory (Washington, District of Columbia); StableBody Technologies, LLC (Lemont, Ill.); The University of Texas at Austin (Austin, Texas); and the ECBC (Aberdeen, Md.), which participated as the validation laboratory. AxioMx, Inc. (Branford, Conn.) was created to rapidly generate high-quality recombinant antibodies.

* Read more in Committee on R&D Needs for Improving Civilian Medical Response to Chemical and Biological Terrorism Incidents, Institute of Medicine. “Detection and Measurement of Biological Agents.” Chemical and Biological Terrorism: Research and Development to Improve Civilian Medical Response (Washington, DC: National Academies Press, 1999).