Asteroid 1998 QE2, nine times larger than cruise ship, to glide past earth

real sense, radar imaging of near-Earth asteroids is a fundamental form of exploring a whole class of solar system objects.”

Asteroids, which are always exposed to the sun, can be shaped like almost anything under it. Those previously imaged by radar and spacecraft have looked like dog bones, bowling pins, spheroids, diamonds, muffins, and potatoes. To find out what 1998 QE2 looks like, stay tuned. Between 30 May and 9 June, radar astronomers using NASA’s 230-foot-wide Deep Space Network antenna at Goldstone, California, and the Arecibo Observatory in Puerto Rico, are planning an extensive campaign of observations. The two telescopes have complementary imaging capabilities that will enable astronomers to learn as much as possible about the asteroid during its brief visit near Earth.

The release notes that NASA places a high priority on tracking asteroids and protecting our home planet from them. In fact, the United States has the most robust and productive survey and detection program for discovering near-Earth objects. To date, U.S. assets have discovered over 98 percent of the known NEOs.

In 2012, the NEO budget was increased from $6 million to $20 million. Literally dozens of people are involved with some aspect of near-Earth object (NEO) research across NASA and its centers. Moreover, there are many more people involved in researching and understanding the nature of asteroids and comets, including those that come close to the Earth, plus those who are trying to find and track them in the first place.

NASA says that in addition to the resources it puts into understanding asteroids, it also partners with other U.S. government agencies, university-based astronomers, and space science institutes across the country that are working to track and better understand these objects, often with grants, interagency transfers and other contracts from NASA.

NASA’s Near-Earth Object Program at NASA Headquarters, Washington, manages and funds the search, study, and monitoring of asteroids and comets whose orbits periodically bring them close to Earth. JPL manages the Near-Earth Object Program Office for NASA’s Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena.

In 2016, NASA will launch a robotic probe to one of the most potentially hazardous of the known NEOs. The OSIRIS-REx mission to asteroid (101955) Bennu will be a pathfinder for future spacecraft designed to perform reconnaissance on any newly-discovered threatening objects. Aside from monitoring potential threats, the study of asteroids and comets enables a valuable opportunity to learn more about the origins of our solar system, the source of water on Earth, and even the origin of organic molecules that lead to the development of life.

NASA recently announced developing a first-ever mission to identify, capture, and relocate an asteroid for human exploration. Using what the agency describes as game-changing technologies, this mission would mark an unprecedented technological achievement that raises the bar of what humans can do in space. Capturing and redirecting an asteroid will integrate the best of NASA’s science, technology, and human exploration capabilities and draw on the innovation of America’s brightest scientists and engineers.