Algae could become an important source of fuel in U.S.

month — about 600 million barrels — each year. The study’s authors note that the new estimate is exactly that — an estimate — based to some degree on assumptions about land and water availability and use.

I’m confident that algal biofuels can be part of the solution to our energy needs, but algal biofuels certainly aren’t the whole solution,” said Wigmosta. Most important, he notes that the cost of making the fuel far exceeds the cost of traditional gasoline-based products right now.

Big ponds, big potential
An algae farm would likely consist of many ponds, with water maybe six to fifteen inches deep. A few companies have built smaller algae farms and are just beginning to churn out huge amounts of algae to convert to fuel; earlier this year, one company sold algae-based oil to customers in California. Players in the algae biofuels arena range from Exxon-Mobil, which launched a $600 million research effort four years ago, to this year’s teenage winner of the Intel Science Talent Search, who was recognized for her work developing algae that produce more oil than they normally do.

The availability of water has been one of the biggest concerns regarding the adoption of broad-scale production of algal biofuel. Scientists estimate that fuel created with algae would use much more water than industrial processes used to harness energy from oil, wind, sunlight, or most other forms of raw energy. To produce twenty-five billion gallons of algae oil, the team estimates that the process annually would require the equivalent of about one-quarter of the amount of water that is now used each year in the entire United States for agriculture. While that is a huge amount, the team notes that the water would come from a multitude of sources: fresh groundwater, salty groundwater, and seawater.

For its analysis, the team limited the amount of freshwater that could be drawn in any one area, assuming that no more than 5 percent of a given watershed’s mean annual water flow could be used in algae production.

That number is a starting point, says Venteris, who notes that it’s the same percentage that the U.S. Environmental Protection Agency allows power plants to use for cooling.

In arid areas such as the Desert Southwest, 5 percent is probably an overstatement of the amount of water available, but in many other areas that are a lot wetter, such as much of the East, it’s likely that much more water would be available,” says Venteris.

While the nation’s Desert Southwest has been considered a possible site for vast algae growth using saline water, rapid evaporation in this region make success there more challenging for low- cost production,” Venteris added.

Venteris and colleagues weighed the pluses and minuses of the various water sources. They note that freshwater is cheap but in very limited supply in many areas. Saline groundwater is attractive because it is widely available but usually at a much deeper depth, requiring more equipment and technology to pump it to the surface and make it suitable for algae production. Seawater is plentiful, but would require much more infrastructure, most notably the creation of pipelines to move the water from the coast to processing plants.

The team notes that special circumstances, such as particularly tight water restrictions in some areas or severe drought or above-average rainfall in others, could affect its estimates of water availability.

The work was funded by the DOE’s Office of Energy Efficiency and Renewable Energy

— Read more in Erik R. Venteris et al., “A GIS Cost Model to Assess the Availability of Freshwater, Seawater, and Saline Groundwater for Algal Biofuel Production in the United States,” Environmental Science and Technology 47, no. 9 (15 March 2013): 4840–49 (DOI: 10.1021/es304135b); and Mark S. Wigmosta et al., “National microalgae biofuel production potential and resource demand,” Water Resources Research 47, no. 3 (March 2011) (DOI: 10.1029/2010WR009966)