Making storm warnings more exact, useful

turn the results into practical, actionable information for residents in the surge zones. They also had to make the results mean something to the overarching reality of climate change and the question it begs: Sea levels are rising — what do we do about it?

In the wake of Sandy, Fritz, now as CSI’s interim president, saw a way for the college to take a critical leadership role in that question, on Staten Island and maybe beyond. It could be a laboratory of sorts, perhaps an exemplar, for the region and even the nation. By making storm surge flooding a little less unpredictable, the study could inform the complicated decisions facing public officials at every level. In that way, Fritz sees the computer modeling as a starting point for much larger discussion. In the months after Sandy, he assembled a diverse team of faculty that extended far beyond science to consider Sandy’s impact from many angles. The objective is ambitious if not daunting — to find ways to avoid or mitigate the effects of future storms. It runs the gamut, from rebuilding and engineering decisions to coping with the devastation, physical and emotional. Several CSI faculty members in psychology and social work are carving out a new area of study — natural-disaster recovery on the most personal level.

In March, the college hosted a daylong forum — Superstorm Sandy: A Serious Conversation About the Future of Staten Island – in which faculty experts were joined by an array of public officials and civic leaders, people with economic interests and ordinary citizens. One of the participants was John Arena, an assistant professor of sociology, anthropology and social work who had lived through Hurricane Katrina when he was at Tulane University. Having studied the toll of the two most devastating storms of recent decades in the United States, Arena has found that weather is beyond human control but the impact isn’t. “Our mantra is there’s no such thing as a natural disaster,” he says. “At every stage from causes to reconstruction there’s a social calculus: Who lives and who dies, who gets to come back and who doesn’t, who benefits and who’s better off.”

The release notes that Fritz’s evolution as a geologist with a broad, humanistic view of the world can be traced to his experience as a leading authority on geological hazards. He worked with governments in the aftermath of the eruptions of Mount St. Helens and volcanos in Colombia. “I found that geologists talk about hazards and then no one listens. It doesn’t get any traction. It’s the interdisciplinary part that makes the difference.” When it comes to rising sea levels, he says, “You have to understand the science of why New York is vulnerable and how surges work, but then you need to include social scientists, mental health counselors, politicians, developers and economists to have a holistic view and make something happen.”

Fritz has opened the conversation himself with what he calls a five-point plan — an outline of ways that government can protect Staten Island from future surges. First, protect the existing natural barriers — the beaches and dunes. Second, build them higher. Third, rezone in the flood zone and buy up as many properties as possible in low-lying areas, turning them into parkland. Fourth, be very careful about engineering solutions such as sea barriers because they will not only be expensive but necessarily protect one area at the expense of another (a sea gate being discussed to protect lower Manhattan would probably be bad for Staten Island). Fifth, educate the people: As obvious as it might seem, many people don’t know to go up, not down, in a storm surge. And if they evacuate to safety, they might not know where safety is. This is where the computer models come in.

“There was no reason people should have died in Sandy,” Fritz says. “We’re using the computers to produce a graphic that’s hard to ignore. It’s not abstract contours on a map. It lets people really visualize what’s going to happen.”