“Active Physics” incorporates active-learning techniques while still being taught to large classes

hold in large classes taught by many instructors over a number of years — if the curriculum is implemented properly.”

Getting students off the mental couch
Tom Bernatowicz, Ph.D., professor of physics, first introduced the Active Physics curriculum to a large introductory class in 2004. Over the next ten years, other physics faculty began to teach the course to equally large classes, and it gradually displaced the sections of the lecture-based introductory course.

Active Physics, a course based on the textbook Six Ideas That Shaped Physics by Thomas A. Moore of Pomona College, has its roots in the 1980s. This is when educators, dissatisfied with lecture courses, became interested in models of instruction that require students to take more responsibility for their own learning. Or, as Moore writes, “Physics is not a collection of facts to absorb, but rather a set of thinking skills requiring practice to master.”

Every aspect of Active Physics is designed to nudge students to be more engaged in learning and to think more and memorize less. For example, both “Active Physics” and the lecture sections of introductory physics courses include a demonstration of Archimedes’ principle.

Students in Active Physics discuss what they think will happen before the demonstration, make a prediction and explain their reasoning to the class. Only once they have a stake in the outcome is the demonstration run. In the traditional lecture class, the instructor performs the demonstration without preamble, explaining the result.

Active Physics homework, revisions and in-class problems are similarly designed to nudge students to dig into the physics instead of letting it wash over them and to encourage them to try exploratory rather than rote learning(for more about this course, see “Physics according to Bernatowicz”).

Losing the attitude
It seemed successful, but nobody knew for sure whether Active Physics was actually achieving the benefits of inquiry or active learning courses taught to much smaller classes.

There was an opportunity to find out, however. The release notes that the Office of the Provost had recently funded the Center for Integrative Research on Cognition, Learning and Education (CIRCLE). Co-directors Frey and Mark A. McDaniel, Ph.D., professor of psychology in Arts & Sciences, teamed up with physics lecturer K. Mairin Hynes, Ph.D., and other faculty to evaluate the program. This study compared the outcomes of students enrolled in Active Physics and the equivalent traditional lecture course for three consecutive academic years, from 2009-2012.

To assess how the courses changed attitudes, all of the students completed the Colorado Learning Attitudes About Science Survey (CLASS), a 42-item questionnaire that asks students to agree or disagree with statements about their attitudes toward physics and learning about physics.

The CLASS statements can be parsed in different ways to capture different aspects of student learning. The CIRCLE team defined two additional subsets of the statements that captured whether the students’ learning approach was rote or conceptual and whether their problem-solving approach was algorithmic or concept-based.

Students were asked, for example, whether they agreed or disagreed with the following CLASS statement:

  • “I do not spend more than five minutes stuck on a physics problem before giving up and seeking help from someone else.”

“This statement is included because many students coming out of high school believe that physics, and to some extent chemistry, is all math, and they have learned to do the problems by rote,” Frey said. “That is, if the problem is very similar to ones they’ve seen before, they can use the procedure they’ve learned.

“But if it is superficially different, they can’t see the underlying concept, and therefore cannot solve it,” she said. “Because they think they should be able to look at a problem and solve it right away, they get frustrated.”

Another CLASS statement that is equally revealing:

  • “In doing a physics problem, if my calculation gives a result very different from what I’d expect, I’d trust the calculation rather than going back through the problem.”

“They really work on this misconception in ‘Active Physics,’” Frey said. “The students must estimate the answer before they solve the problem, and once they solve the problem, they must say whether their answer is reasonable or not and why.

“Some students are naturally active learners,” she said, “but many are not. So it is our job to teach them how to teach themselves rather than just passively waiting to be taught.

“If we want graduates who can really problem-solve, innovate, be creative and lead, we have to teach students to be active learners. It’s that active learning and complex problem solving we’re trying to bring back into introductory courses using techniques such as ‘Active Physics,’” Frey said.

— Read more in Michael J. Cahill et al., “Multiyear, multi-instructor evaluation of a large-class interactive-engagement curriculum,” Physical Review Special Topics Physics Education Research 10, 020101 (2 July 2014) (DOI: http://dx.doi.org/10.1103/PhysRevSTPER.10.020101)