Conditions increasing Zika virus risk present in many U.S. cities

Monaghan stressed that, even if Zika establishes a toehold in the mainland United States, it is unlikely to spread as widely as in Latin America and the Caribbean. This is partly because a higher percentage of Americans live and work in air-conditioned and largely sealed homes and offices.

The study is being published today in PLOS Currents Outbreaks.

Spreading rapidly
First identified in Uganda in 1947, the Zika virus has moved through tropical regions of the world over the past decade. It was introduced into Brazil last year and spread explosively across Latin America and the Caribbean, with more than twenty countries now facing pandemics.

About 80 percent of infected people do not have significant symptoms, and most of the rest suffer relatively mild flu- or cold-like symptoms that generally clear up in about a week. However, scientists are investigating correlations between contracting the disease during pregnancy and microcephaly, a rare birth defect characterized by an abnormally small head and brain damage.

To determine the potential risk in the mainland United States, the research team ran two computer models that simulated the effect of meteorological conditions on a mosquito’s entire lifecycle (egg, larval, pupal, and adult stages) in 50 cities in or near the known range of the species. Monaghan and several team members have studied Aedes aegypti for years because it also carries the viruses that cause dengue and chikungunya.

Generally, the mosquitoes need warm and relatively stable temperatures, as well as water-filled containers such as buckets, barrels, or tires, for their eggs to hatch. Once a mosquito bites an infected person, it also needs to live long enough — probably a week or more, depending on ambient temperatures – for the virus to travel from the mosquito’s mid-gut to its salivary glands. Once in the saliva, the virus can then be transmitted by the mosquito biting another person.

The study results show that, as springtime weather warms, the potential abundance of the mosquito begins to increase in April in the Southeast and some Arizona cities. By June, nearly all of the 50 cities studied have the potential for at least low-to-moderate abundance, and most eastern cities are suitable for moderate-to-high abundance. Conditions become most suitable for mosquito populations in July, August, and September, although the peak times vary by city. Weather conditions in southern and western cities remain suitable as late as November.

Even some cities where the Aedes aegypti mosquito has not been detected, such as St. Louis and Denver, have suitable midsummer weather conditions for the species if it were introduced via transport of used tires or by other human activities, according to the computer models.

The researchers stressed that additional factors outside the scope of the study could affect populations of the species, such as mosquito control efforts, competition with other mosquito species, and the extent to which eggs can survive in borderline temperatures.

The study noted that northern cities could become vulnerable if a related species of mosquito that is more tolerant of cold temperatures, Aedes albopictus, begins to carry the virus.

Factoring in travel, poverty
In addition to looking at meteorological conditions, the researchers studied two other key variables that could influence the potential for Zika outbreaks: travel from Zika-affected areas and socioeconomic conditions in states that may face abundant mosquito populations.

To analyze air travel, the team estimated the number of passengers arriving into U.S. cities on direct flights from airports in 22 Latin American countries and territories listed on the Centers for Disease Control and Prevention’s Zika travel advisory as of 29 January.

Cities that had both high potential numbers of Aedes aegypti and a large volume of air travelers included Miami, Houston, and Orlando. Since the scientists were able to obtain passenger numbers for direct flights only, they could not estimate the number of passengers continuing on to smaller cities. They noted that the summertime peak in air travel coincides with the peak season in mosquito abundance.

The study also estimated that nearly five times as many people cross the U.S.-Mexico border per month than arrive by air in all fifty cities. This could indicate a high potential for transmission in border areas from Texas to California, although the Zika virus has not been widely reported in northern Mexico.

NCAR notes that those border areas, as well as other parts of the South where the mosquitoes are expected to be abundant, have a high percentage of households living below the poverty line, according to 2014 U.S. Census data analyzed by the research team. Lower-income residents can be more exposed to mosquito bites if they live in houses without air conditioning or have torn or missing screens that enable mosquitoes to enter their homes more easily. However, Aedes aegypti populations tend to thrive in densely populated urban areas, while some of the most impoverished areas are rural.

“The results of this study are a step toward providing information to the broader scientific and public health communities on the highest risk areas for Zika emergence in the United States,” said Kacey Ernst, an epidemiologist at the University of Arizona and co-author of the study. “We hope that others will build on this work as more information becomes available. All areas with an environment suitable to the establishment of Aedes aegypti should be working to enhance surveillance strategies to monitor the Aedes aegypti populations and human populations for disease emergence.”

“This research highlights the complex set of human and environmental factors that determine whether a mosquito-borne disease is carried from one area to another, and how severely it affects different human populations,” said Sarah Ruth, program director in the National Science Foundation’s Division of Atmospheric and Geospace Sciences. “By integrating information on weather, travel patterns, mosquito biology, and human behavior, the project team has improved our ability to forecast, deal with, and possibly even prevent future outbreaks of Zika and other serious diseases.”

— Read more in Andrew Monaghan et al., “On the Seasonal Occurrence and Abundance of the Zika Virus Vector Mosquito Aedes Aegypti in the Contiguous United States,” PLOS Current Outbreaks (16 march 2016)