Planetary securityThree years on, the Chelyabinsk superbolide mystery continues

Published 12 April 2016

On 15 February 2013, the approach of asteroid (367943) Duende to our planet was being closely monitored by both the public and the scientific community worldwide when suddenly a superbolide entered the atmosphere above the region of Chelyabinsk in Russia. Three years and hundreds of published scientific studies later, we are still looking for the origin of such unexpected visitor, which caused damage to hundreds of buildings and injuries to nearly 1,500 people.

On 15 February 2013, the approach of asteroid (367943) Duende to our planet was being closely monitored by both the public and the scientific community worldwide when suddenly a superbolide entered the atmosphere above the region of Chelyabinsk in Russia. Three years and hundreds of published scientific studies later, we are still looking for the origin of such unexpected visitor, which caused damage to hundreds of buildings and injuries to nearly 1,500 people. Finding the precise value of its speed as it touched the top of the atmosphere appears to be the key to determine the orbit of the parent body of the Chelyabinsk superbolide.

Three years have passed since the Chelyabinsk (Russia) great scare and during this time more than two hundred research papers -50 in the last year- related directly or indirectly to the 19-m wide Chelyabinsk superbolide have been published in scientific peer-review journals”, explains Carlos de la Fuente Marcos, co-author of one of these research works.

Among these studies, there is a catalog of 960 video recordings, published by the journal Astronomy & Astrophysics, that includes material automatically recorded by security cameras, traffic cameras, dashcams —very popular in Russia — installed on-board of all types of vehicles, and manual recordings made with the video cameras and webcams of the many accidental witnesses of the impressive phenomenon who shared their experiences on the internet.

Alpha Galileo reports that the images and diverse scientific data compiled during the event have allowed the calculation of the atmospheric entry trajectory of the meteoroid, which turned into a meteor when it crossed Earth’s atmosphere, exploding at a height of 20 km and releasing 500 kilotons or energy, approximately thirty times the yield of the Hiroshima nuclear bomb. The shockwave generated by such an explosion caused damage out to a distance of seventy-five miles breaking the windows, and even the window frames in some cases, of hundreds of buildings and injuring 1,491 people mainly due to cuts inflicted by shattered and broken glass. Approximately five tons of meteoritic material reached the ground, including the 650-kg meteorite that was recovered by divers from the bottom of Lake Chebarkul.