First response technology“Liquid fingerprinting” technique identifies unknown liquids instantly

Published 5 August 2016

A new company — Validere — will commercialize sensing technology invented at Harvard University that can perform instant, in-field characterization of the chemical make-up and material properties of unknown liquids. Validere aims to develop the licensed technology, called Watermark Ink (W-INK), into a pocket-sized device that could be used by first responders to quickly identify chemical spills, or by officials to verify the fuel grade of gasoline right at the pump.

A new company will commercialize sensing technology invented at Harvard University that can perform instant, in-field characterization of the chemical make-up and material properties of unknown liquids.

Validere, cofounded by Harvard scientists and engineers, has raised an initial round of seed capital and has entered into a worldwide exclusive licensing agreement with the university to pursue applications in quality assurance and liquid identification.

Validere aims to develop the licensed technology, called Watermark Ink (W-INK), into a pocket-sized device that could be used by first responders to quickly identify chemical spills, or by officials to verify the fuel grade of gasoline right at the pump. Unlike other techniques for identifying and authenticating liquids, Harvard’s solution is inexpensive, instantaneous, and portable. 

Harvard University reports that the W-INK concept, developed in the laboratory of Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and a Core Faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering, exploits the chemical and optical properties of precisely nanostructured materials to distinguish liquids by their surface tension. Marko Lončar, Tiantsai Lin Professor of Electrical Engineering at SEAS, also contributed to its development.

Akin to the litmus paper used in chemistry labs to detect the pH of a liquid, the detector changes color when it comes in contact with a liquid with a particular surface tension. The color-changing strip can be programmed to respond precisely to the unique surface tension exhibited by any liquid of interest.

This idea advanced swiftly through Harvard thanks to an organic system that facilitates progress from discovery to application,” said Aizenberg, who is also Professor of Chemistry and Chemical Biology and Director of the Kavli Institute for Bionano Science and Technology. “We first developed the technology from basic research in my lab at SEAS. The Harvard Office of Technology Development (OTD) guided and supported our commercialization strategy through its Physical Sciences and Engineering Accelerator. Out of this virtuous cycle of innovation Validere was spun off with a viable commercial product.”

The W-INK technology, which received early support from the Air Force Office of Scientific Research and a proof-of-concept contract from the U.S. Department of Transportation, could have important applications in industry and government.