view counter

The challenge of sustainable mineral supply

For goods like clothing, cosmetics, or electronics, price can easily trigger changes in supply. This is not possible with mineral supply, however, because the time horizon for developing a rare earth mineral deposit from exploration and discovery to mining is 10-15 years.

For instance, the last major deposit for copper was discovered in Mongolia fifteen years ago and only began producing in fall 2016, creating huge supply challenges.

Added to this, only 10 percent of early exploration efforts actually lead to a minable deposit. Most discoveries are either not economically viable to mine or companies run into land use or zoning problems due to geopolitical challenges.

“Countries where minerals are likely to be found may have poor governance, making it higher risk for supply. But production from these countries will be needed to meet global demand. We need to be thinking about this,” Ali said.

Few alternatives, difficult to recycle
Then there is the common consumer misconception that we can just use something else. For many mineral uses, there are no alternatives. There are few commercially viable replacement minerals for many applications of copper wiring, for example.

The same may be true for technology metals that could become essential in green technologies — like neodymium, terbium or iridium. These minerals are only needed in small quantities, but they are indispensable to making the technology work, meaning that while the scale seems small, the value is immense.

Environmental costs and materials recycling options need to be considered, too.

Metals and carbon fiber used in the manufacture of aircraft or automobiles are often thought to have less environmental impact because they are light, but Ali explained that the manufacturing of carbon fibers currently is highly petroleum based.

“Because they are lighter, people think they are somehow greener, but they aren’t and they are difficult, if not impossible, to recycle,” he said.

Ali and his colleagues hope that this paper is the first step toward an intergovernmental mechanism or other solution that can empower nations to plan for mineral scarcity as both the public and private sector are mineral dependent.

The research team contends that positive strides can be made quickly through expansion of developing organizations, such as the United Nation’s International Resource Panel or the Canadian-led Intergovernmental Panel on Mining Metals and Sustainable Development.

Longer term solutions will require greater transparency among nations, and could include global sharing of geological data and the creation of mechanisms to protect mineral deposit ‘finds’ much like we protect intellectual property.

“It’s about managing the flow of resources from the ground to product to consumer to recycling,” Ali said.

The bottom line
The hard truth, though, is that if nothing changes shrinking supply naturally will lead to rising prices. It also could lead to serious global challenges if essential resources that people have been so dependent on collapse.

Take the infrastructure around renewable energy technologies, such as wind turbines. Right now, the technology is new, but what if resources dry up for new production or repair of existing technology? A bottleneck in terms of material production could create a bottleneck in terms of energy production too.

Even nuclear power, often considered a universal cure for global energy woes, is not immune to mineral scarcity. In fact, all nuclear reactors today require uranium — a metal that must be mined — in order to function.

“People have been so concerned about climate change that it’s created a real movement around it. We don’t see this around resource use and recovery, even though it is much closer to us on a daily basis,” Ali said.

The article in Nature grew out of a collaborative workshop sponsored by UNESCO, the International Council of Science Unions (ICSU), and the International Union of Geological Sciences in 2015.

— Read more in Saleem H. Ali et al., “Mineral supply for sustainable development requires resource governance,” Nature 543 (15 March 2017): 367-72 (DOI: 10.1038/nature21359)

Leave a comment

Register for your own account so you may participate in comment discussion. Please read the Comment Guidelines before posting. By leaving a comment, you agree to abide by our Comment Guidelines, our Privacy Policy, and Terms of Use. Please stay on topic, be civil, and be brief. Names are displayed with all comments. Learn more about Joining our Web Community.