view counter

Grid protectionStrengthening the cybersecurity of the grid

Published 29 September 2017

As the U.S. electricity grid continues to modernize, it will mean things like better reliability and resilience, lower environmental impacts, greater integration of renewable energy, as well as new computing and communications technologies to monitor and manage the increasing number of devices that connect to the grid. However, that enhanced connectivity for grid operators and consumers also opens the door to potential cyber intrusions. New project aims to mitigate vulnerabilities introduced by rooftop solar panels integrated with the grid.

As the U.S. electricity grid continues to modernize, it will mean things like better reliability and resilience, lower environmental impacts, greater integration of renewable energy, as well as new computing and communications technologies to monitor and manage the increasing number of devices that connect to the grid. However, that enhanced connectivity for grid operators and consumers also opens the door to potential cyber intrusions.

As part of the Department of Energy’s (DOE’s) commitment to building cyber-resilient energy delivery systems, a new project led by Lawrence Berkeley National Laboratory (Berkeley Lab) will develop tools to detect and counter certain types of cyberattacks on the grid. The project has been awarded up to $2.5 million in funding over three years by DOE, one of twenty projects for cybersecurity on the grid announced recently.

LBL says that with rooftop solar panels surging in popularity in the United States – growing from 30,000 homes in 2006 to more than one million last year – Berkeley Lab’s project focuses on solar inverters, devices that turn the direct current from rooftop solar panels into alternating current that is fed back onto the grid. So-called “smart inverters” can enhance overall system reliability and reduce operational costs.

Industry and government are now developing standards for how solar inverters communicate with the grid so that the photovoltaic (PV) modules can adjust their power levels accordingly.

“It is this standardization that presents a vulnerability,” said Daniel Arnold, a Berkeley Lab researcher and engineer who is one of the leads of the project. “As we modernize the grid, our belief is that we, as a society, can enjoy all of the benefits of large amounts of distributed PV, such as reduced greenhouse gas emissions and a more resilient system, and still have a secure network that is potentially more robust to cyber intrusions than it was before the introduction of large amounts of distributed PV.”