New radiation detectors developed at Sandia used for New START inspections

The equipment was subjected to numerous tests to ensure its robustness and reliability. Mary Clare Stoddard, manager for arms control technology development at Sandia, said, “Over the course of all the testing we did about 1,000 tests to stress the hardware. The carrying cases got a little thrashed but the hardware was fine.”

After the team of Sandia engineers and physicists designed equipment that would meet the needs of the treaty with modern parts, they invited some U.S. inspectors to evaluate the prototypes. One of their tests involved rolling a calibrated detector down a steep hill, while in its carrying case, and then verifying that the equipment still gave accurate results. It did.

“The ability of this equipment to make reliable, accurate measurements after being kicked down a hill is pretty amazing,” said Stoddard.

In addition to being able to take some hard use, the equipment doesn’t need to be calibrated as frequently and is lighter weight. The original set of equipment, containing two detectors and everything needed to set them up and operate them, weighed about 200 pounds and fit in four cases. The new equipment weighs 120 pounds and fits in three cases with wheels. Wheels aren’t helpful all the time, but on smooth surfaces they can be quite a boon.

“The Sandia team’s balance of technical excellence with pragmatic field-oriented engineering was key to coming up with the right product,” said Carolyn Pura, a former Sandia employee who now works at the National Nuclear Security Administration supporting New START.

Russians inspect and approve radiation detectors
Before the new equipment was approved for on-site inspections, Pura and others were involved in lengthy discussions with Russia, our treaty partner. The Russians inspected the new equipment for 30 days as part of the treaty-defined process for approval.

The team fabricated and tested enough equipment to support New START inspections — fewer than 24 sets — made of a mixture of custom and commercially available parts. Though the equipment is essential for treaty inspections, it wouldn’t be profitable for a private company to specially design and produce so few systems, Stoddard added.

Sandia notes that in addition to Sandia’s long history supporting nonproliferation and treaty verification efforts, the NNSA Office of Nuclear Verification, which funded the work, came to Sandia because of its nuclear weapons expertise. Stoddard said, “This is our mission. We understand how design affects the measurements so we can advise on how to use the equipment in the field.”