Nuclear safetySandia transport triathlon puts spent nuclear fuel to the test

Published 22 March 2018

Nuclear power supplies almost 20 percent of U.S. electricity and is the leading carbon-neutral power source. However, it produces between 2,200 and 2,600 tons of spent fuel in the United States each year. Fuel rods become brittle and highly radioactive while powering the nuclear reactor, making safe transportation important. Sandia National Laboratories researchers completed an eight-month, 14,500-mile triathlon-like test to gather data on the bumps and jolts spent nuclear fuel experiences during transportation.

 

Spent nuclear fuel needs to be safely transported from the power plants where it is generated to interim storage locations and eventually to a permanent geologic disposal site.

Late last year, Sandia National Laboratories researchers completed an eight-month, 14,500-mile triathlon-like test to gather data on the bumps and jolts spent nuclear fuel experiences during transportation. The data from this test could be used to demonstrate the safe transportation of spent nuclear fuel.

Nuclear power supplies almost 20 percent of U.S. electricity and is the leading carbon-neutral power source. However, it produces between 2,200 and 2,600 tons of spent fuel in the United States each year. Fuel rods become brittle and highly radioactive while powering the nuclear reactor, making safe transportation important.

A nuclear waste transportation and storage cask fresh off the assembly line was loaded with three surrogate fuel rod assemblies from the U.S., Spain and South Korea and then traveled from Spain to Colorado and back again by truck, ship and train. Zirconium alloy tubes filled with lead rope, lead pellets or molybdenum pellets imitated the uranium oxide pellets inside a spent nuclear fuel rod.

“All of our preliminary data suggests that the likelihood of a fuel rod breaking during routine handing and transportation is low. This test is more realistic than past tests and could result in a more reliable quantification of the transportation risks,” said Sylvia Saltzstein, manager of the transportation projects.

Sandia Lab says that Sandia collaborated on the triathlon with Equipos Nucleares S.A. (ENSA), the Spanish cask designer and manufacturer, and Empresa Nacional de Residuos Radiactivos S.A. (ENRESA), the corporation responsible for the management of nuclear waste in Spain. The Korea Radioactive Waste Agency (KORAD), Korea Atomic Energy Research Institute (KAERI), and Pacific Northwest and Argonne national laboratories also took part in the triathlon.