CybersecurityExposing security vulnerabilities in terahertz data links

Published 17 October 2018

Scientists have assumed that future terahertz data links would have an inherent immunity to eavesdropping, but new research shows that’s not necessarily the case. The study shows that terahertz data links, which may play a role in ultra-high-speed wireless data networks of the future, aren’t as immune to eavesdropping as many researchers have assumed. The research shows that it is possible for a clever eavesdropper to intercept a signal from a terahertz transmitter without the intrusion being detected at the receiver.

A new study shows that terahertz data links, which may play a role in ultra-high-speed wireless data networks of the future, aren’t as immune to eavesdropping as many researchers have assumed. The research, published in the journal Nature, shows that it is possible for a clever eavesdropper to intercept a signal from a terahertz transmitter without the intrusion being detected at the receiver.

“The conventional wisdom in the terahertz community has been that it’s virtually impossible to spy on a terahertz data link without the attack being noticed,” said Daniel Mittleman, a professor in Brown University’s School of Engineering and a coauthor of the research. “But we show that undetected eavesdropping in the terahertz realm is easier than most people had assumed and that we need to be thinking about security issues as we think about designing network architectures.”

Brown notes that because of its higher frequency, terahertz radiation can carry up to 100 times more data than the microwaves used in wireless communication today, which makes terahertz an attractive option for use in future wireless networks. Along with enhanced bandwidth, it has also been generally assumed that the way in which high-frequency waves propagate would naturally enhance security. Unlike microwaves, which propagate in wide-angle broadcasts, terahertz waves travel in narrow, very directional beams.

“In microwave communications, an eavesdropper can put an antenna just about anywhere in the broadcast cone and pick up the signal without interfering with the intended receiver,” Mittleman said. “Assuming that the attacker can decode that signal, they can then eavesdrop without being detected. But in terahertz networks, the narrow beams would mean that an eavesdropper would have to place the antenna between the transmitter and receiver. The thought was that there would be no way to do that without blocking some or all of the signal, which would make an eavesdropping attempt easily detectable by the intended receiver.”