Infectious diseaseNew layer of medical preparedness to combat emerging infectious disease

Published 21 February 2019

Researchers supporting the PREventing EMerging Pathogenic Threats PREEMPT program will model viral evolution in animal populations, quantify the probability of human pathogen emergence, and pursue proof-of-concept interventions to prevent viral spread to humans.

DARPA has selected five teams of researchers to support PREventing EMerging Pathogenic Threats (PREEMPT), a 3.5-year program first announced in January 2018 to reinforce traditional medical preparedness by containing viral infectious diseases in animal reservoirs and insect vectors before they can threaten humans. Through studies in secure laboratories and simulated natural environments, the PREEMPT researchers will model how viruses might evolve within animal populations, and assess the safety and efficacy of potential interventions. Autonomous Therapeutics, Inc., Institut Pasteur, Montana State University, The Pirbright Institute, and the University of California, Davis, lead the PREEMPT teams.

DARPA challenges the PREEMPT research community to look far left on the emerging threat timeline and identify opportunities to contain viruses before they ever endanger humans,” said Dr. Brad Ringeisen, the DARPA program manager for PREEMPT. “One of the chief limitations of how infectious disease modeling is currently conducted is that it forecasts the trajectory of an outbreak only after it is underway in people. The best that data can do is inform a public health response, which places the United States in a reactive mode. We require proactive options to keep our troops and the homeland safe from emerging infectious disease threats.”

According to the World Health Organization (WHO), approximately 60 percent of emerging infectious diseases reported globally are zoonoses, meaning that they were initially diseases of animals and at some point became capable of infecting people. Zoonotic diseases are responsible for millions of human deaths every year, and the scope of the challenge is increasing due to the densification of livestock production, human encroachment into natural spaces, and upward trends in globalization, temperature, and population.

Ebola is a high-profile example of a zoonotic disease. Despite being relatively difficult to spread — requiring direct contact with fluids from infected organisms — a string of outbreaks over the past five years has highlighted the threat it could present once established in densely populated areas. Researchers express even greater concern over the pandemic potential of new strains of the influenza virus and other airborne pathogens. Even in the United States and its territories, where viruses do not frequently emerge directly from animal reservoirs, vector-borne transmission of zoonoses such as West Nile virus disease is on the rise.