Energy securityExploring Options for Microreactors in Alaska

Published 13 August 2019

For cities in the most isolated regions of Alaska, keeping the lights on is often challenging and almost always expensive. There’s no good way to string power lines over the vast expanses of wilderness that separate individual towns, so instead of one consolidated grid spanning the entire state, Alaskans get their power from a disconnected mishmash of more than 200 microgrids. This is why experts have been exploring whether microreactors might help alleviate some of Alaska’s energy challenges.

For cities in the most isolated regions of Alaska, keeping the lights on is often challenging and almost always expensive.

There’s no good way to string power lines over the vast expanses of wilderness that separate individual towns, so instead of one consolidated grid spanning the entire state, Alaskans get their power from a disconnected mishmash of more than 200 microgrids.

Typically, these remote microgrids are powered by diesel fuel, which must be shipped by barge or even flown by airplane hundreds of miles. If the weather turns bad, the fuel might be delayed, causing shortages and price spikes.

Where power in the lower 48 states costs about 12 cents per kilowatt-hour, the Alaskan power price averages 18 cents per kWh.

“The cost disparities between urban and rural communities are enormous,” said Nolan Klouda, director of the Center for Economic Development at the University of Alaska Anchorage. “In some remote villages in the state, power might cost $1 per kilowatt hour.”

Alleviating Energy Challenges
That’s why Klouda and the University of Alaska have partnered with Idaho National Laboratory to analyze whether microreactors might help alleviate some of Alaska’s energy challenges.

Microreactors are small nuclear reactors that could be built in a factory and transported in a shipping container to just about anywhere in the world.

INL says that most microreactor designs would produce less than 50 megawatts (thermal). Engineers envision plugging a microreactor into an existing grid with minimal infrastructure upgrades. Their small size and advanced technologies allow the reactors to operate safely with few workers on a small footprint with very little maintenance.

These advanced microreactor technologies include passive safety systems and advanced, high-performance materials that markedly reduce the chance of an accident.

Most microreactor designs would arrive on site fully sealed with all the fuel needed to operate for the life of the reactor. “You can easily imagine reactors that don’t need to be refueled and last for more than 10 years,” said Steven Aumeier, INL’s senior adviser for Nuclear Energy Programs.