Nuclear detectionRemotely Monitoring Nuclear Reactors with Antineutrino Detection

Published 15 August 2019

Technology to measure the flow of subatomic particles known as antineutrinos from nuclear reactors could allow continuous remote monitoring designed to detect fueling changes that might indicate the diversion of nuclear materials. The monitoring could be done from outside the reactor vessel, and the technology may be sensitive enough to detect substitution of a single fuel assembly.

Technology to measure the flow of subatomic particles known as antineutrinos from nuclear reactors could allow continuous remote monitoring designed to detect fueling changes that might indicate the diversion of nuclear materials. The monitoring could be done from outside the reactor vessel, and the technology may be sensitive enough to detect substitution of a single fuel assembly.

The technique, which could be used with existing pressurized water reactors as well as future designs expected to require less frequent refueling, could supplement other monitoring techniques, including the presence of human inspectors. The potential utility of the above-ground antineutrino monitoring technique for current and future reactors was confirmed through extensive simulations done by researchers at the Georgia Institute of Technology.

“Antineutrino detectors offer a solution for continuous, real-time verification of what is going on within a nuclear reactor without actually having to be in the reactor core,” said Anna Erickson, associate professor in Georgia Tech’s George W. Woodruff School of Mechanical Engineering. “You cannot shield antineutrinos, so if the state running a reactor decides to use it for nefarious purposes, they can’t prevent us from seeing that there was a change in reactor operations.”

The research, reported August 6 in the journal Nature Communications, was partially supported by a grant from the Nuclear Regulatory Commission (NRC). The research evaluated two types of reactors, and antineutrino detection technology based on a PROSPECT detector currently deployed at Oak Ridge National Laboratory’s High Flux Isotope Reactor (HFIR).

Georgie Tech notes that antineutrinos are elementary subatomic particles with an infinitesimally small mass and no electrical charge. They are capable of passing through shielding around a nuclear reactor core, where they are produced as part of the nuclear fission process. The flux of antineutrinos produced in a nuclear reactor depends on the type of fission materials and the power level at which the reactor is operated.