Volcanoes Kill More People Long after They First Erupt – Those Deaths Are Avoidable

Interviews gave us more insight into the pressures that might have led to those risky decisions. Most people who chose to return to evacuation zones were aware of the risks, but pressures to protect livelihoods and well-being override those considerations. Many returned to look after property, animals or crops. Some people simply wanted to protect and be with their community and seek solace in their home. Few just returned out of curiosity.

Difficult conditions in evacuation shelters also contribute. After the Soufrière Hills Volcano on Montserrat began to erupt in 1995, some people lived for months in refuges where supplies of fresh vegetables were in short supply. By 1997, some were returning to the evacuated zone to tend to crops in an attempt to provide for not only their families but others too. In June of that year, 19 people died during an upsurge in activity in the exclusion zone.

Saving Lives and Livelihoods
What ours and the other studies we analyzed show is that promoting awareness of the sustained risks of volcanoes is a good start, but it’s not enough to ensure people’s safety. Evacuation strategies also need to find ways of minimizing long-term impacts on livelihoods and well-being – especially when they last for more than a few days. For example, authorities could provide alternative pasture for animals, or ensure market prices don’t fall if they have to sell them.

Allowing populations at risk to anticipate sudden changes in activity would also be helpful. The better we can forecast sudden upsurges in activity, the less disruption there will be to affected populations. Scientists are hopeful that new technologies such as drones, space-based monitoring and better micro-analysis of erupted rocks will soon allow us to better detect when unrest turns to more violent eruptions and, just as importantly, when a volcano will settle for a longer period of time. Improving communication networks in at-risk areas is also crucial for improved forecasting to be useful.

Of course, most important of all is that strategies are designed by working collaboratively with and for communities at risk. There are already some wonderful examples where scientists, authorities and communities collaborate to share and rapidly transmit information when activity changes. For example, at Tungurahua in Ecuador, “watchers” have direct radio contact with the local observatory and are trusted members of their community. This network enabled populations to respond rapidly when the volcano started generating pyroclastic flows between 2006 and 2014.

All of this applies not just to volcanoes, but other protracted hazards such as flooding, coastal erosion and landslides too – many of which we will face with increased frequency in the future. By truly understanding and addressing what drives people to return to dangerous zones, and helping them anticipate times of extreme risk, we can save countless lives and countless more livelihoods.

Jenni Barclay is Professor of Volcanology, University of East Anglia. Roger Few is Professorial Research Fellow in Environment, Risk and Development, University of East Anglia. This article is published courtesy of The Conversation.