RobotsBio-Inspired Theoretical Research May Improve Robots’ Effectiveness on Battlefield

Published 1 November 2019

In an effort to make robots more effective and versatile teammates for soldiers in combat, Army researchers are on a mission to understand the value of the molecular living functionality of muscle, and the fundamental mechanics that would need to be replicated in order to artificially achieve the capabilities arising from the proteins responsible for muscle contraction.

In an effort to make robots more effective and versatile teammates for soldiers in combat, Army researchers are on a mission to understand the value of the molecular living functionality of muscle, and the fundamental mechanics that would need to be replicated in order to artificially achieve the capabilities arising from the proteins responsible for muscle contraction.

Bionanomotors, like myosins that move along actin networks, are responsible for most methods of motion in all life forms. Thus, the development of artificial nanomotors could be game-changing in the field of robotics research.

The Army says that researchers from the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory have been looking to identify a design that would allow the artificial nanomotor to take advantage of Brownian motion, the property of particles to agitatedly move simply because they are warm.

The CCDC ARL researchers believe understanding and developing these fundamental mechanics are a necessary foundational step toward making informed decisions on the viability of new directions in robotics involving the blending of synthetic biology, robotics, and dynamics and controls engineering.

The Journal of Biomechanical Engineering recently featured their research.

By controlling the stiffness of different geometrical features of a simple lever-arm design, we found that we could use Brownian motion to make the nanomotor more capable of reaching desirable positions for creating linear motion,” said Dean Culver, a researcher in CCDC ARL’s Vehicle Technology Directorate. “This nano-scale feature translates to more energetically efficient actuation at a macro scale, meaning robots that can do more for the warfighter over a longer amount of time.”

According to Culver, the descriptions of protein interactions in muscle contraction are typically fairly high-level. More specifically, rather than describing the forces that act on an individual protein to seek its counterpart, prescribed or empirical rate functions that dictate the conditions under which a binding or a release event occurs have been used by the research community to replicate this biomechanical process.