Gene editingSafe Genes Tool Kit Takes Shape

Published 21 November 2019

DARPA launched the Safe Genes program in 2017 to establish a “safety by design” strategy for guiding the development of an array of powerful, emergent genome editing technologies. DARPA says that DARPA’s goals for Safe Genes are to mitigate the risks and security concerns related to the accidental or intentional misuse of such technologies and, at the same time, enable the pursuit of novel genetic solutions that support public health and military force protection and readiness.

DARPA launched the Safe Genes program in 2017 to establish a “safety by design” strategy for guiding the development of an array of powerful, emergent genome editing technologies. DARPA says that consistent with the National Biodefense Strategy published last year, “DARPA’s goals for Safe Genes are to mitigate the risks and security concerns related to the accidental or intentional misuse of such technologies and, at the same time, enable the pursuit of novel genetic solutions that support public health and military force protection and readiness.”

DARPA says thatin the first two years of the program, Safe Genes performers worked to gain a fundamental understanding of how genome editing technologies function and how they might be controlled or countered. To do so, the researchers developed new molecular tools and measurements and led discovery through laboratory experiments and computer simulations. Encouraging results from this first phase of the program support the ongoing development of safety mechanisms and countermeasures to control, block, and reverse the effects of genome editors, as well as the creation of new technologies to safely, responsibly, and predictably apply them when warranted.

“During the first phase of Safe Genes, we focused on ground truth, technological foundations, and early proofs of concept to determine which research pathways show the most promise,” said Renee Wegrzyn, the Safe Genes program manager. “The remaining Safe Genes teams are spearheading unique approaches that support development of a layered, modular, adaptable solution set.”

For example, the research team led by Massachusetts General Hospital (MGH) is pursuing a multifaceted approach to improving gene editing capabilities through the introduction of greater control over when and where in the genome that editors function — necessary advances for the use of editors for therapeutic purposes. Already they have developed tools for accurately measuring unintended edits known as off-target effects, along with open-source software to rapidly analyze sequencing data, and they have applied these technologies to the informed design of novel guides and editors that improve overall performance while reducing off-target effects.