CybersecurityToward an Unhackable Quantum Internet

By Leah Burrows

Published 20 April 2020

A quantum internet could be used to send un-hackable messages, improve the accuracy of GPS, and enable cloud-based quantum computing. For more than twenty years, dreams of creating such a quantum network have remained out of reach in large part because of the difficulty to send quantum signals across large distances without loss. Researchers have found a way to correct for signal loss.

A quantum internet could be used to send un-hackable messages, improve the accuracy of GPS, and enable cloud-based quantum computing. For more than twenty years, dreams of creating such a quantum network have remained out of reach in large part because of the difficulty to send quantum signals across large distances without loss.

Now, Harvard and Massachusetts Institute of Technology (MIT) researchers have found a way to correct for signal loss with a prototype quantum node that can catch, store and entangle bits of quantum information. The research is the missing link towards a practical quantum internet and a major step forward in the development of long-distance quantum networks.

“This demonstration is a conceptual breakthrough that could extend the longest possible range of quantum networks and potentially enable many new applications in a manner that is impossible with any existing technologies,” said Mikhail Lukin, the George Vasmer Leverett Professor of Physics and a co-director of Harvard Quantum Initiative. “This is the realization of a goal that has been pursued by our quantum science and engineering community for more than two decades.”

The research is published in Nature.

Every form of communication technology — from the first telegraph to today’s fiber optic internet — has had to address the fact that signals degrade and are lost when transmitted over distances. The first repeaters, which receive and amplify signals to correct for this loss, were developed to amplify fading wire telegraph signals in the mid-1800s.  Two hundred years later, repeaters are an integral part of our long-distance communications infrastructure.

In a classical network, if Alice in New York wants to send Bob in California a message, the message travels from coast to coast in more or less a straight line. Along the way, the signal passes through repeaters, where it is read, amplified and corrected for errors. The whole process is at any point vulnerable to attacks.

If Alice wants to send a quantum message, however, the process is different. Quantum networks use quantum particles of light — individual photons — to communicate quantum states of light over long distances. These networks have a trick that classical systems don’t: entanglement.