The World's Biggest Waves: How Climate Change Could Trigger Large Landslides and “Mega-Tsunamis”

However, the 2017 landslide into Karrat Fiord, Greenland, was deadly. It generated a 90 metre high tsunami at the impact site. This wave propagated 30 kilometers to the community of Nuugaatsiaq, wiping it out and killing four people. Other major landslide wave events have recently occurred in Norway and British Columbia.

Tsunamis are also generated by other mechanisms including earthquakes, volcanic collapse and submarine landslides. Earthquakes can trigger massive submarine landslides, which have been shown to be major contributors to the maximum tsunami run-up. This occurred when earthquakes struck Japan in 2011 and New Zealand in 2016, resulting in run-up of 40 meters and seven meters in each case.

Predicting the Wave Size
Large landslide tsunamis are difficult or impossible to measure in the field. They typically occur in mountainous regions with very steep slopes, and therefore are usually far from big cities. Geologists have documented many of the cases by mapping the run-up elevations or deposits of trees and rocks washed off slopes after these events, like in Taan Fiord.

But these natural hazards pose a major threat to society. What if a landslide into a reservoir creates a wave that overtops a dam? This happened in 1963 in Vajont, Italy, killing more than 2,000 people who lived downstream.

A better understanding of how landslides generate waves is crucial. Experimental studies are a way to gain insight into these waves. Laboratory tests have led to empirical equations to predict the size of landslide tsunamis.

Recent research with detailed measurements using high-speed digital cameras is helping to determine the controls of the landslide properties on the generation of waves. This has led to new research at Queen’s University that has improved the theoretical understanding of how landslides transfer momentum to water and generate waves.

The wave size depends on the thickness and speed of the slide at impact. The shape of these waves can now be predicted and along with the wave amplitude (the distance from rest to crest), and be used as input to computer models for wave propagation and full simulation of landslide wave generation. These models can help understand and predict the behavior of waves at the laboratory scale and at the field scale in coastal environments.

Past and Future Events
Since 1900, there have been eight confirmed massive wave events where large landslides have generated waves greater than 30 meters high. Two of these led to over 100 deaths in Norway in the 1930s. Of these eight major events, four have occurred since 2000.

However, other events with smaller waves have devastated more populated coasts. For example, the collapse of the Anak Krakatau volcano in 2018 generated a tsunami on the coast of Indonesia that caused over 400 casualties and major infrastructure damage.

Will more of these events occur in the future? Climate change could influence the frequency and magnitude of these natural hazards.

A warming climate certainly changes northern and alpine environments in many ways. This can include permafrost thawingretreating glaciers and iceberg calving, more frequent freeze-thaw cycles and increased rainfall or other hydraulic triggers. All of these can contribute to destabilizing rock slopes and increase the risk of a major landslide into water.

These natural hazards can’t be prevented, but damage to infrastructure and populations can be minimized. This can be achieved through scientific understanding of the physical processes, site-specific engineering risk analysis and coastal management of hazard-prone regions.

Ryan P. Mulligan is Associate Professor of Civil Engineering, Queen’s University, Ontario. Andy Take is Professor, Department of Civil Engineering, Queen’s University, Ontario. This article is published courtesy of The Conversation.