Planetary securityThe Cataclysm that Killed the Dinosaurs

By Juan Siliezar

Published 22 February 2021

It was tens of miles wide and forever changed history when it crashed into Earth about 66 million years ago.

The Chicxulub impactor, as it’s known, was a plummeting asteroid or comet that left behind a crater off the coast of Mexico that spans 93 miles and goes 12 miles deep. Its devastating impact brought the reign of the dinosaurs to an abrupt and calamitous end, scientists say, by triggering their sudden mass extinction, along with the end of almost three-quarters of the plant and animal species then living on Earth. New theory explains possible origin of the plummeting Chicxulub impactor.

It was tens of miles wide and forever changed history when it crashed into Earth about 66 million years ago.

The Chicxulub impactor, as it’s known, was a plummeting asteroid or comet that left behind a crater off the coast of Mexico that spans 93 miles and goes 12 miles deep. Its devastating impact brought the reign of the dinosaurs to an abrupt and calamitous end, scientists say, by triggering their sudden mass extinction, along with the end of almost three-quarters of the plant and animal species then living on Earth.

The enduring puzzle has always been where the asteroid or comet originated, and how it came to strike the Earth. And now a pair of Harvard researchers believe they have the answer.

In a study published in Scientific Reports, Avi Loeb, Frank B. Baird Jr. Professor of Science at Harvard, and Amir Siraj ’21, an astrophysics concentrator, put forth a new theory that could explain the origin and journey of this catastrophic object and others like it.

Using statistical analysis and gravitational simulations, Loeb and Siraj say that a significant fraction of a type of comet originating from the Oort cloud, a sphere of debris at the edge of the solar system, was bumped off-course by Jupiter’s gravitational field during its orbit and sent close to the sun, whose tidal force broke apart pieces of the rock. That increases the rate of comets like Chicxulub (pronounced Chicks-uh-lub) because these fragments cross the Earth’s orbit and hit the planet once every 250 to 730 million years or so.

“Basically, Jupiter acts as a kind of pinball machine,” said Siraj, who is also co-president of Harvard Students for the Exploration and Development of Space and is pursuing a master’s degree at the New England Conservatory of Music. “Jupiter kicks these incoming long-period comets into orbits that bring them very close to the sun.”

It’s because of this that long-period comets, which take more than 200 years to orbit the sun, are called sun grazers, he said.