Water securitySustainable Water Management Key to Scaling Up Bioenergy Production

Published 12 March 2021

To avoid a substantial increase in water scarcity, biomass plantations for energy production need sustainable water management, a new study shows.

Bioenergy is frequently considered one of the options to reduce greenhouse gases for achieving the Paris climate goals, especially if combined with capturing the CO2 from biomass power plants and storing it underground. Growing large-scale bioenergy plantations worldwide, however, does not just require land, but also considerable amounts of freshwater for irrigation – which can be at odds with respecting Earth’s Planetary Boundaries. An international team of scientists has used their most detailed computer simulations to date to calculate how much additional water stress could result for people worldwide in a scenario of conventional irrigation and one of sustainable freshwater use.

“Irrigation of future biomass plantations for energy production without sustainable water management, combined with population growth, could double both the global area and the number of people experiencing severe water stress by the end of the century, according to our computer simulations,” says lead author Fabian Stenzel from the Potsdam Institute for Climate Impact Research (PIK), who developed the research idea for this study while participating in the Young Scientists Summer Program (YSSP) – IIASA’s flagship initiative for mentoring young scientists. “However, sustainable water management could almost halve the additional water stress compared to another analyzed scenario of strong climate change unmitigated by bioenergy production.”

Both Political Regulation and On-Farm Improvements Needed
“Sustainable water management means both political regulation – such as pricing or water allocation schemes – to reduce the amounts of water taken from rivers as well as on-farm improvements to make more efficient use of the water,” explains study coauthor Sylvia Tramberend, a researcher in the IIASA Water Security Research Group. “This could include cisterns for rainwater collection or mulching to reduce evaporation. Moreover, sustainable water management includes the preservation of reliable river flows to ensure undisturbed ecosystems in and alongside rivers. Up- and downstream river management may in fact require international cooperation calling for more transboundary river management, as well as between different water users – that’s the challenge ahead for integrated water resource management.”