Rapidly Restoring the Electrical Grid after Cyberattack

researchers have developed countermeasures to cyberattacks designed to corrupt configuration files, introduce malicious code in control systems, or perpetrate others types of damage. Among these countermeasures are tools that could automatically map and assess the state and configuration of electrical power networks and detect and characterize power-grid malware.

To test and evaluate new grid-saving tools developed by RADICS researchers, the program featured a custom-built testbed that replicates real-world conditions that utilities and first responders could encounter during a cyberattack. To design the testbed, RADICS leveraged over a decade of testbed-architecture work by researchers (and program performers) based at the University of Illinois Urbana-Champaign (UIUC). The RADICS testbed is comprised of miniaturized substations that were designed to operate as they do in the real world, but with safeguards to protect the system and those operating the substations. The substations are connected via power lines, forming a multi-utility crank path. With a crank path, power is generated to black start one utility that then powers the next utility and the next until the grid is fully restored. The testbed was designed around commonly deployed systems in North America and configured in ways that actual utilities use. Further, the UIUC team implemented a distributed, state-of-the-art computer network that allowed for the necessary data collection, dynamic reconfiguration, and adaptation of the environment, which was needed to meet the requirements that Weiss and his team at DARPA specified for the program.

“Testbeds are more than just hardware and software; they are the people, the knowledge, the data, and the assets that are necessary to build out an environment to serve the designed purpose,” said Tim Yardley, the principal investigator responsible for the testbed effort at UIUC. “The RADICS testbed provided a state-of-the-art environment to explore the unknown, test theories and approaches, and accomplish what has never been tried before – live-fire cyberattacks on critical infrastructure systems in a controlled and observable way.”

Working collaboratively with the Department of Homeland Security (DHS), the RADICS team developed and deployed the testbed at Orient Point, New York, which is home to the DHS Plum Island Animal Disease Center (PIADC). The island provided an isolated environment for the safe construction and use of the multi-utility crank path. While first constructed in 2017, the test system was deployed iteratively every six months thereafter to continuously challenge and evaluate the RADICS technology as it advanced and evolved.

Starting in 2017, RADICS tools emerging from the