CybersecurityNew Initiative Aims to Ensure 5G Networks Are Reliable, Secure

Published 30 March 2021

The transition to 5G will affect every device connected to the internet. Later this year, a team of Stanford researchers will demonstrate how a tight formation of computer-controlled drones can be managed with precision even when the 5G network controlling it is under continual cyberattack. The demo’s ultimate success or failure will depend on the ability of an experimental network control technology to detect the hacks and defeat them within a second to safeguard the navigation systems.

Later this year, in a lab in the Durand Building at Stanford University School of Engineering, a team of researchers will demonstrate how a tight formation of computer-controlled drones can be managed with precision even when the 5G network controlling it is under continual cyberattack. The demo’s ultimate success or failure will depend on the ability of an experimental network control technology to detect the hacks and defeat them within a second to safeguard the navigation systems.

On hand to observe this demonstration will be officials from DARPA, the Defense Advanced Research Projects Agency, the government agency that’s underwriting Project Pronto. The $30 million effort, led by Nick McKeown, a professor of electrical engineering and computer science at Stanford, is largely funded and technically supported through the nonprofit Open Networking Foundation (ONF), with help from Princeton and Cornell universities. Their goal: to make sure that the wireless world – namely, 5G networks that will support the autonomous planes, trains and automobiles of the future – remains secure and reliable as the wired networks we rely on today.

This is no small task and the consequences could not be greater. The transition to 5G will affect every device connected to the internet and, by extension, the lives of every person who relies on such networks for safe transportation. But, as recent intrusions into wired networks have shown, serious vulnerabilities exist.

The pending Pronto demo is designed to solve that problem by way of a fix that McKeown and colleagues have devised that wraps a virtually instantaneous shield around wirelessly accessible computers using a technology known as software-defined networking (SDN).

Invented by McKeown’s group more than a dozen years ago, SDN is a simplified approach to traditional “black box” proprietary networking that decouples a network’s data and routing functions for faster, easier reconfiguration on the fly. Now, McKeown and his collaborators are applying advanced SDN techniques to secure the 5G and wireline networks. These techniques make networks more secure and more resilient, with the goal of recovering from a cyberattack in less than a single second – orders of magnitude faster than today’s networks. In particular, the group will demonstrate how such a network can support flying of drones in a tight formation – one of the most demanding applications of 5G in the presence of network and computer failures and attacks.