CybersecurityHarnessing Chaos to Protect Devices from Hackers

Published 12 April 2021

Researchers have found a way to use chaos to help develop digital fingerprints for electronic devices that may be unique enough to foil even the most sophisticated hackers. Just how unique are these fingerprints? The researchers believe it would take longer than the lifetime of the universe to test for every possible combination available.

Researchers have found a way to use chaos to help develop digital fingerprints for electronic devices that may be unique enough to foil even the most sophisticated hackers.

Just how unique are these fingerprints? The researchers believe it would take longer than the lifetime of the universe to test for every possible combination available.

“In our system, chaos is very, very good,” said Daniel Gauthier, senior author of the study and professor of physics at The Ohio State University.

The study was recently published online in the journal IEEE Access.

The researchers created a new version of an emerging technology called physically unclonable functions, or PUFs, that are built into computer chips.

Gauthier said these new PUFs could potentially be used to create secure ID cards, to track goods in supply chains and as part of authentication applications, where it is vital to know that you’re not communicating with an impostor.

“The SolarWinds hack that targeted the U.S. government really got people thinking about how we’re going to be doing authentication and cryptography,” Gauthier said.

“We’re hopeful that this could be part of the solution.”

The new solution makes use of PUFs, which take advantage of tiny manufacturing variations found in each computer chip – variations so small that they aren’t noticeable to the end user, said Noeloikeau Charlot, lead author of the study and a doctoral student in physics at Ohio State.

“There’s a wealth of information in even the smallest differences found on computers chips that we can exploit to create PUFs,” Charlot said.

These slight variations – sometimes seen only at the atomic level – are used to create unique sequences of 0s and 1s that researchers in the field call, appropriately enough, “secrets.”

Other groups have developed what they thought were strong PUFs, but research showed that hackers could successfully attack them. The problem is that current PUFs contain only a limited number of secrets, Gauthier said.

“If you have a PUF where this number is 1,000 or 10,000 or even a million, a hacker with the right technology and enough time can learn all the secrets on the chip,” Gauthier said.

“We believe we have found a way to produce an uncountably large number of secrets to use that will make it next to impossible for hackers to figure them out, even if they had direct access to the computer chip.”