Placement of wind-turbine increases power tenfold

is to focus instead on the design of the wind farm itself, to maximize its energy-collecting efficiency at heights closer to the ground. While winds blow far less energetically at, say, 30 feet off the ground than at 100 feet, “the global wind power available 30 feet off the ground is greater than the world’s electricity usage, several times over,” he says. That means that enough energy can be obtained with smaller, cheaper, less environmentally intrusive turbines — as long as they’re the right turbines, arranged in the right way.

VAWTs are ideal, Dabiri says, because they can be positioned very close to one another. This lets them capture nearly all of the energy of the blowing wind and even wind energy above the farm. Having every turbine turn in the opposite direction of its neighbors, the researchers found, also increases their efficiency, perhaps because the opposing spins decrease the drag on each turbine, allowing it to spin faster (Dabiri got the idea for using this type of constructive interference from his studies of schooling fish).

In the summer 2010 field tests, Dabiri and his colleagues measured the rotational speed and power generated by each of the six turbines when placed in a number of different configurations. One turbine was kept in a fixed position for every configuration; the others were on portable footings that allowed them to be shifted around.

The tests showed that an arrangement in which all of the turbines in an array were spaced four turbine diameters apart (roughly five meters, or approximately sixteen feet) completely eliminated the aerodynamic interference between neighboring turbines. By comparison, removing the aerodynamic interference between propeller-style wind turbines would require spacing them about twenty diameters apart, which means a distance of more than one mile between the largest wind turbines now in use.

The six VAWTs generated from 21 to 47 watts of power per square meter of land area; a comparably sized HAWT farm generates just 2 to 3 watts per square meter.

We’re on the right track, but this is by no means ‘mission accomplished,’” Dabiri says. “The next steps are to scale up the field demonstration and to improve upon the off-the-shelf wind-turbine designs used for the pilot study.” Still, he says, “I think these results are a compelling call for further research on alternatives to the wind-energy status quo.”

This summer, Dabiri and colleagues are studying a larger array of eighteen VAWTs to follow up last year’s field study.