Severe tropical droughts as northern temperatures rise

300 BCE to 900 CE, with notably heavy precipitation around 550. Beginning in 900, however, a severe drought set in for the next three centuries, with the driest period falling between 1000 and 1040. This period correlates with the well-known demise of regional Native American populations, Abbott explained, including the Tiwanaku and Wari that inhabited present-day Boliva, Chile, and Peru.

After 1300, monsoons increasingly drenched the South American tropics. The wettest period of the past 2,300 years lasted from roughly 1500 to the 1750s during the time span known as the Little Ice Age, a period of cooler global temperatures. Around 1820, a dry cycle crept in briefly, but quickly gave way to a wet phase before the rain began waning again in 1900. By July 2007, when the sediment core was collected, there had been a steep, steady increase in dry conditions to a high point not surpassed since 1000.

To create a climate record from the sediment core, the team analyzed the ratio of the oxygen isotope delta-O-18 in each annual layer of lake-bed mud. This ratio has a negative relationship with rainfall: Levels of delta-O-18 are low during the wetter seasons and high when monsoon rain is light. The team found that the rainfall history suggested by the lake core matched that established by delta-O-18 analyses from Cascayunga Cave in the Peruvian lowlands and the Quelccaya Ice Cap located high in the Andes. The Pumacocha core followed the climatological narrative of these sources between the years 980 and 2006, but provided much more detail, Abbott said.

The team then established a connection between rainfall and Northern Hemisphere temperatures by comparing their core to the movement of the Intertropical Convergence Zone (ITCZ), a balmy strip of thunderstorms near the equator where winds from the Northern and Southern Hemispheres meet. Abbott and his colleagues concluded that warm Northern temperatures such as those currently recorded lure the ITCZ — the main source of monsoons — north and ultimately reduce the rainfall on which tropical areas rely.

The historical presence of the ITCZ has been gauged by measuring the titanium concentrations of sea sediment, according to the PNAS report. High levels of titanium in the Cariaco Basin north of Venezuela show that the ITCZ lingered in the upper climes at the same time the South American monsoon was at its driest, between 900 and 1100.

On the other hand, the wettest period at Pumacocha — between 1400 and 1820, which coincided with the Little Ice Age — correlates with the ITCZ’s sojourn to far south of the equator as Northern Hemisphere temperatures cooled.

— read more in Broxton W. Bird et al., “A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes,” Proceedings of the National Academy of Sciences (9 May 2011( (doi: 10.1073/pnas.1003719108)