Solving nuclear fuel storage problem more crucial than ever: MIT report

resurgence of nuclear power, which had been growing in the United States, is likely to suffer at least a temporary setback. Already, several countries have suspended or delayed plans for new nuclear plants or for extending the operating lifetime of existing plants.

Because of repeated delays in creating a national long-term storage repository for spent nuclear fuel (SNF), U.S. nuclear reactor sites already house more spent fuel than those in Japan, Forsberg noted. That confirms the study’s existing conclusions about the need for a comprehensive U.S. policy on spent fuel, to replace the present ad-hoc policy.

The Japanese crisis “will place a greater emphasis on our recommendation for centralized storage or disposal in a repository with the option of SNF recovery,” he says, referring to the report’s suggestion that used fuel be stored in such a way that it could easily be recovered later if the nation decides to pursue a nuclear program based on reprocessing it to produce new fuel for a future generation of reactors.

The full 253-page interdisciplinary study, released last week, was produced under the auspices of the MIT Energy Initiative (MITEI) and co-chaired by MITEI director Ernest J. Moniz and TEPCO Professor of Nuclear Engineering Mujid Kazimi, who also is director of the Center for Advanced Nuclear Energy Systems (CANES).

The latest in a series of broad-based MITEI studies of different aspects of energy, this report was produced by 10 faculty members, three contributing authors and eight student research assistants, with guidance from a 13-member expert advisory panel comprising members from industry, academia and nonprofit organizations; it took about two years to produce.

The study suggests that nuclear power can play a significant part in displacing carbon-emitting fossil-fuel plants, and thus help to reduce the potential for global climate change. About half of existing nuclear power plants around the world — and all of those in the United States — use a once-through fuel cycle, in which the fuel rods, after a single use in the reactor, are sent to a disposal site, rather than being reprocessed for future use. To decide on the best kind of fuel cycle to be used for the anticipated next generation of nuclear power plants — whether it should continue to be a once-through system, or one using partial or full reprocessing for a “closed-loop” system — will require more research, the report concludes.

One promising possibility, the study suggests, is an enriched uranium-initiated breeder reactor in which fissile materials bred inside the reactor are recycled, and additional uranium is added to the reactor core at the same rate that nuclear materials are consumed. In such a system, no excess nuclear materials are produced, leading to a simple and efficient self-sustaining fuel cycle. There is, however, little hard data on whether such a cycle would be practical and economically competitive. One of the report’s major conclusions is that more research is needed before such decisions can be made.

One key message of the report is that it’s time to really study the underlying basis of nuclear-plant technology — what kind of fuel goes in, what comes out, and what happens to it then — before focusing too much money and effort on the engineering details of specific power plant designs.

The report also supports the present U.S. policy of providing loan guarantees for the first several new nuclear plants to be built after the current three-decade hiatus, in order to reduce the risks of new construction and thus reduce or eliminate financing premiums for nuclear-plant construction.

The study, unlike most earlier examinations of possible future nuclear plants, looked comprehensively at all the various components — from mining to reactor operation all the way through to waste disposal — in a holistic way. It was funded by the Electric Power Research Institute, Idaho National Laboratory, Nuclear Energy Institute, Areva, GE-Hitachi, Westinghouse, Energy Solutions and NAC International.