• Massive reserves of mercury hidden in permafrost hold significant implications for human health

    Researchers have discovered permafrost in the northern hemisphere stores massive amounts of natural mercury, a finding with significant implications for human health and ecosystems worldwide. The scientists measured mercury concentrations in permafrost cores from Alaska and estimated how much mercury has been trapped in permafrost north of the equator since the last Ice Age. Their study reveals northern permafrost soils are the largest reservoir of mercury on the planet, storing nearly twice as much mercury as all other soils, the ocean and the atmosphere combined.

  • Confirmation: Assad has been using chemical weapons from stocks he pledged to relinquish in 2013

    Labs performing scientific analysis for the UN chemical weapons watchdog have confirmed that the Assad regime has continued to use chemical weapons against Sunni civilians in Syria – chemical munitions from stocks which the regime was supposed to have relinquished in 2013. The analysis also concluded that it would have been virtually impossible for the anti-regime rebels to carry out a coordinated, large-scale chemical strikes with poisonous munitions, even if they had been able to steal the chemicals from the government’s stockpile.

  • New radiation detectors developed at Sandia used for New START inspections

    Sandia National Laboratories designed, tested, and delivered new radiation detection equipment for monitoring under the New START Treaty. Defense Threat Reduction Agency inspectors recently used this equipment for the first time in Russia for a New START inspection. New START, or the New Strategic Arms Reduction Treaty, is a treaty between the United States and Russia that, among other limits, reduces the deployed nuclear warheads on both sides to 1,550 by 5 February. These limits will be maintained for as long as the treaty remains in force. The treaty includes regular on-site inspections of warheads and delivery systems.

  • Making production of high explosives cheaper, safer

    Scientists from the U.S. Army Research Laboratory (ARL) and the Lawrence Livermore National Laboratory found a solution to a significant challenge in making high-energy explosives. They safely improved the overall chemical yield derived from diaminoglyoxime, known as DAG, and significantly increased the amount of material made per reaction.

  • The man who knew too much

    In November 2006, on orders of Vladimir Putin, Russian operatives used radioactive material to poison and kill Alexandr Litvinenko, a former KGB colleague who had turned a fierce critic of the Russian leader, and who was living with his family in London. Yesterday, the British government froze the assets of the two Russian agents – one of them has been awarded a medal by Putin, and is now a leading member of United Russia, Putin’s political party, in the Russian parliament. Ten years later, in November 2016, a leading British nuclear forensic scientist – who was part of the 2006 investigation and who was instrumental in tying the nuclear material used in the killing to the two Russian agents — was found dead in his home, after returning from an academic research trip to Russia. It was the 14th Russia-related killing on British soil since 2006. The number of individuals with inside knowledge of the Putin regime and its practices — and who have met an untimely end in mysterious circumstances — is growing, and British lawmakers urge the government to show more resolve in investigating this string of killings.

  • Radioactivity from oil, gas wastewater persists in Pennsylvania stream sediments

    More than seven years after Pennsylvania officials requested that the disposal of radium-laden fracking wastewater into surface waters be restricted, a new study finds. The contamination is coming from the disposal of conventional, or non-fracked, oil and gas wastewater, which, under current state regulations, can still be treated and discharged to local streams.

  • Draft U.S. document confirms Russian plans for “Doomsday” weapon

    Some two years ago, Western intelligence and military experts scrambled to make sense of a strange new Russian weapon whose designs were glimpsed briefly in a mysterious report on Russian state TV. The weapon was a nuclear-capable underwater drone that would be launched from a submarine. The description accompanying a picture of the drone said such vehicles or weapons would be pilotless and capable of attacking enemies and creating “zones of extensive radioactive contamination unfit for military, economic or other activity for a long period of time.” Now, for the first time there are public indications that U.S. intelligence have not only confirmed Russian intentions for the weapon, but are also trying to figure out how to respond to it.

  • Thorium reactors could dispose of large amounts of weapons-grade plutonium

    Scientists are developing a technology enabling the construction of high-temperature, gas-cool, low-power reactors with thorium fuel. The scientists propose to burn weapons-grade plutonium in these units, converting it into power and thermal energy. Thermal energy generated at thorium reactors may be used in hydrogen industrial production. The technology also makes it possible to desalinate water. 

  • Checking chemical detectors’ sensitivity to chemicals

    The Joint Chemical Agent Detector (JCAD) has become an important defense tool on battlefields and in war-torn cities over the last few years. About the size and shape of a VHS tape or a hardcover bestselling novel, JCADs sound an alarm and begin to light up if nerve agents such as sarin or blister agents such as mustard gas are present. The detectors are already designed to withstand intense environments and repeated use. But when the Department of Defense wanted a way to check the devices’ sensitivity to chemicals over time, a measurement team at the National Institute of Standards and Technology (NIST) was called in to provide a cost-effective solution.

  • Distant-scanning crowds for potential threats

    Everyone wants to be safe and secure, but can you imagine if you had to go through a security screening at the metro station like there is at the airport? What if there were a way to safely scan crowds for potential threat items in places like metro and train stations without security officials coming into direct contact with the public and while maintaining individual privacy?

  • U.K. gov. launches £3M competition for innovative airport bomb-detection tech

    Two U.K. government ministries — the Home Office and Department for Transport—have launched a Dragons’ Den-style investment prize, hoping to find innovative ways to detect bombs in laptops, phones, and cameras carried by passengers on board. The government has announced a £3 million competition in an effort to attract scientists and inventors to help the security services and the airline industry keep up with the nefarious ingenuity of terrorists.

  • Balloon-borne infrasound sensor array detects explosions

    Infrasound is sound of very low frequencies, below 20 hertz, which is lower than humans can hear. African elephants produce infrasound for long-distance communication at around 15 hertz. For comparison, a bumblebee’s buzz is typically 150 hertz and humans hear in the range of 20 to 20,000 hertz. Infrasound is important because it’s one of the verification technologies the U.S. and the international community use to monitor explosions, including those caused by nuclear tests. Traditionally, infrasound is detected by ground-based sensor arrays, which don’t cover the open ocean and can be muddled by other noises, such as the wind. Sandia Lab scientists is using sheets of plastic, packing tape, some string, a little charcoal dust, and a white shoebox-size box to build a solar-powered hot air balloon for detecting infrasound.

  • Smart sensor could revolutionize crime, terrorism prevention

    Crime, terrorism prevention, environmental monitoring, reusable electronics, medical diagnostics and food safety, are just a few of the far-reaching areas where a new chemical sensor could revolutionize progress. Engineers at the University of Oxford have used material compounds, known as Metal Organic Frameworks (MOFs), to develop technology that senses and responds to light and chemicals. The material visibly changes color depending on the substance detected.

  • Enlisting drones to detect unexploded landmines through changes in plant health

    From U.S. Navy laboratories to battlefields in Afghanistan, researchers are lining up to explore the use of unmanned aerial vehicles to detect unexploded landmines. Researchers are enlisting a third variable —plant health — to see whether drones can be used to more safely locate such weapons of destruction. Plant responses to explosives have only been tested – but at the leaf level and in the lab. Now, research can be applied at the field level with the use of UAVs.

  • New simulator tool allows testing the explosive vulnerabilities of aircraft

    Each day, more than twenty-six thousand commercial flights transport passengers and cargo to destinations around the world. S&T’s Commercial Aircraft Vulnerability and Mitigation (CAVM) program supports testing and evaluation efforts to assess potential vulnerabilities and evaluate countermeasures that can mitigate the impact of explosives on commercial aircraft. Newer generations of commercial aircraft fuselages are being made with composite materials, such as carbon fiber reinforced plastic, so CAVM needs to develop a sustainable and representative testing solution in order to all evaluations of new composite aircraft structures to explosive-based threats could continue as needed.