• Horsepox synthesis, dual-use research, and scientific research’s “action bias”

    Julius Caesar is said to have stated “alea iacta est” (the die is cast) as he led his army across the Rubicon river, triggering a point of no return in Roman history. In many ways, the horsepox synthesis, published by two Canadian scientists last month, is considered a new Rubicon for synthetic biology and the life sciences. Experts say that now that we’ve ventured across the river, it seems that we may be learning more about dual-use research in general. One expert notes that “Beyond the immediate issue of whether the horsepox work should have been performed (or published), the horsepox synthesis story highlights a more general challenge facing dual-use research in biotechnology: the unilateralist’s curse.” Research unilateralism contains an “action bias”: Horsepox synthesis is more likely to occur when scientists act independently than when they agree to a decision as a group.

  • Real-time Captcha technique bolsters biometric authentication

    A new login authentication approach could improve the security of current biometric techniques that rely on video or images of users’ faces. Known as Real-Time Captcha, the technique uses a unique challenge that’s easy for humans — but difficult for attackers who may be using machine learning and image generation software to spoof legitimate users.

  • U.S. seeks to boost domestic production of 35 critical minerals

    The U.S. Department of the Interior (DOI) last week announced it was seeking public comment by 19 March 2018 on a draft list of minerals considered critical to the economic and national security of the United States. The draft list of minerals that DOI published last week as critical to the United States includes thirty-five mineral commodities. A “critical mineral” is a mineral identified to be a non-fuel mineral or mineral material essential to the economic and national security of the United States, the supply chain of which is vulnerable to disruption, and that serves an essential function in the manufacturing of a product, the absence of which would have significant consequences for the economy or national security.

  • Meet the new “renewable superpowers”: nations that boss the materials used for wind and solar

    Imagine a world where every country has not only complied with the Paris climate agreement but has moved away from fossil fuels entirely. How would such a change affect global politics? The twentieth century was dominated by coal, oil and natural gas, but a shift to zero-emission energy generation and transport means a new set of elements will become key. Solar energy, for instance, still primarily uses silicon technology, for which the major raw material is the rock quartzite. Lithium represents the key limiting resource for most batteries – while rare earth metals, in particular “lanthanides” such as neodymium, are required for the magnets in wind turbine generators. Copper is the conductor of choice for wind power, being used in the generator windings, power cables, transformers and inverters. In considering this future it is necessary to understand who wins and loses by a switch from carbon to silicon, copper, lithium, and rare earth metals.

  • Super wood stronger than most metals

    Engineers have found a way to make wood more than ten times stronger and tougher than before, creating a natural substance that is stronger than many titanium alloys. “This new way to treat wood makes it twelve times stronger than natural wood and ten times tougher,” said one researcher. “This could be a competitor to steel or even titanium alloys, it is so strong and durable. It’s also comparable to carbon fiber, but much less expensive.”

  • Risk of extreme weather events higher if Paris Agreement goals are not met

    The Paris Agreement has aspirational goals of limiting temperature rise that will not be met by current commitments but the individual commitments made by parties of the UN Paris Agreement are not enough to fulfill the agreement’s overall goal of limiting global temperature rise to less than 2 degrees Celsius above pre-industrial levels. The difference between the UN goal and the actual country commitments is a mere 1 C, which may seem negligible, but a new study finds that even that 1-degree difference could increase the likelihood of extreme weather.

  • Why security measures won’t stop school shootings

    When deadly school shootings like the one that took place on Valentine’s Day in Broward County, Florida occur, often they are followed by calls for more stringent security measures. While some of these measures seem sensible, overall there is little empirical evidence that such security measures decrease the likelihood of school shootings. Surveillance cameras were powerless to stop the carnage in Columbine and school lock-down policies did not save the children at Sandy Hook. We believe what is missing from the discussion is the idea of an educational response. Current policy responses do not address the fundamental question of why so many mass shootings take place in schools. To answer this question, we need to get to the heart of how students experience school and the meaning that schools have in American life. It is time to think about school shootings not as a problem of security, but also as a problem of education.

  • Preventing intentional or accidental creation of synthetic biological threats

    Battelle has been awarded a contract by the Intelligence Advanced Research Projects Activity (IARPA) to develop threat assessment software to help prevent the creation of dangerous organisms. Using predictive algorithms, the software would be able to determine the suspected function of a DNA fragment based solely on its sequence. It would be used to screen DNA sequences to determine whether the sequence is related to any known organisms, predict the function of unknown sequences, and assign a threat level based on the potential for harm. By screening and characterizing genetic sequences before they are synthesized, the software would enable the end user to vastly reduce the risk that biological threats will be created either intentionally or accidentally.

  • Energy-efficient encryption for the internet of things

    Most sensitive web transactions are protected by public-key cryptography, a type of encryption that lets computers share information securely without first agreeing on a secret encryption key. Public-key encryption protocols are complicated, and in computer networks, they’re executed by software. But that won’t work in the internet of things, an envisioned network that would connect many different sensors — embedded in vehicles, appliances, civil structures, manufacturing equipment, and even livestock tags — to online servers. Embedded sensors that need to maximize battery life can’t afford the energy and memory space that software execution of encryption protocols would require. Special-purpose chip reduces power consumption of public-key encryption by 99.75 percent, increases speed 500-fold.

  • Running out of water: Cape Town, the U.S., and drought

    The recent news that Cape Town, South Africa—a modern city of nearly 4 million residents (plus over 1.5 million tourists yearly)—was on the brink of running out of water, the taps about to run dry, put water back into the headlines. After years of drought in several American states, could this happen closer to home? “The current crisis in Cape Town will almost inevitably repeat itself elsewhere,” says an expert. “Because of geography, many cities in the United States and the world are highly or entirely reliant on local precipitation. In California, for example, most of the Central Coast, including Monterey and Santa Cruz, currently depend on local rainfall. Given climate change, moreover, droughts in the arid regions of the world are likely to become more frequent and more severe. Warmer temperatures, moreover, will raise evapotranspiration rates—increasing agricultural water needs and the amount of stored water lost to evaporation.”

  • Students to help DHS S&T tackle air travel security issues

    Students from James Madison University (JMU) will be tackling air travel security issues for the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) as part of their spring semester of the Hacking 4 Defense (H4D) class. The H4D team will look for innovative approaches that will enable the Transportation Security Administration (TSA) to be able to associate passengers with their personal belongings.

  • Cape Town water crisis highlights a worldwide problem

    The water supply is running dry in Cape Town, South Africa. The city’s reservoirs are shrinking as a three-year drought wears on. If it doesn’t rain soon, the drought could bring South Africa’s second most populous city to its knees. Cape Town residents are adapting as best they can. They are skipping showers and finding new ways to conserve and reuse their meager allowance of 50 liters (13 gallons) per person per day. That allowance may soon be cut in half, too. As soon as April or May, Cape Town could reach “Day Zero,” when the city will shut off the taps in homes and businesses. Residents will need to line up at collection stations to gather their water rations. Only hospitals, schools, and other essential services would still receive piped water. If things continue on in this way, Cape Town is in danger of becoming the world’s first major city to run entirely out of water. How can this happen in a city of four million residents? And what other cities may be at risk?

  • Spotting IEDs from a safe distance

    Landmines, improvised explosive devices (IEDs), and other homemade bombs struck 6,461 people worldwide in 2015, killing at least 1,672. Survivors are often left with devastating injuries. In a study published in BMJ Open, 70 percent of people hit by IEDS in Afghanistan required multiple amputations. These homemade bombs are often hidden—nestled in bushes, buried underground, or sometimes stuffed inside other objects. To keep soldiers away from these deadly weapons, researchers are developing technology that can spot explosive hazards precisely and from a safe distance.

  • A quantum leap for quantum communication

    Quantum communication, which ensures absolute data security, is one of the most advanced branches of the “second quantum revolution.” In quantum communication, the participating parties can detect any attempt at eavesdropping by resorting to the fundamental principle of quantum mechanics — a measurement affects the measured quantity. Thus, the mere existence of an eavesdropper can be detected by identifying the traces that his measurements of the communication channel leave behind. The major drawback of quantum communication today is the slow speed of data transfer, which is limited by the speed at which the parties can perform quantum measurements. Researchers have devised a method that overcomes this speed limit, and enables an increase in the rate of data transfer by more than 5 orders of magnitude.

  • Comparing pollution levels before and after Hurricane Harvey

    Hurricane Harvey, which made landfall in late August 2017, brought more than 64 inches of rain to the Houston area, flooding 200,000 homes, 13 Superfund sites, and more than 800 wastewater treatment facilities. As disasters become more frequent and populations living in vulnerable areas increase, interest in the health effects of exposure to the combination of natural and technological disasters has grown. A new study examined concentrations of polycyclic aromatic hydrocarbons (PAHs) before and after Hurricane Harvey in the Houston neighborhood of Manchester. Manchester, which is located near refineries and other industrial sites along the Houston Ship Channel, is a predominantly Hispanic neighborhood where residents face disproportionate health risks due to pollution and other environmental hazards.