• Mobile phones can reveal exposure to radiation

    In accidents or terror attacks which are suspected to involve radioactive substances, it can be difficult to determine whether people nearby have been exposed to radiation. But by analyzing mobile phones and other objects which come in close contact with the body, it is possible to retrieve important information on radiation exposure.

  • Pocket-size biological solution to radioactive threats

    Yaky Yanay, co-CEO of Pluristem Therapeutics, last week surprised the participants The Jerusalem Post Annual Conference in New York by saying that a small glass vial he pulled out of his pocket offered a solution to Iran’s nuclear threats. “I have the solution in my pocket.” The company has developed an anti-radiation therapy that can be stockpiled for emergencies. The therapy harnesses the power of the human placenta to contain the cascading effect of radiation exposure in the body and allow for the natural healing of cells.

  • New plutonium discovery to help nuclear waste clean-up

    Plutonium has long been part of many countries’ nuclear energy strategies, but scientists are still unlocking the mysteries behind this complicated element and seeing how they can use heavier, nuclear elements to clean up nuclear waste. Now, new research shows that plutonium does not exactly work the way scientists thought it did. The findings will contribute to the effort to develop technologies to clean up nuclear waste.

  • Nuclear storage tunnel collapses at Washington State’s Hanford site; employees evacuated

    Hundreds of workers have been forced to “take cover” after a tunnel in a nuclear finishing plant collapsed at the Hanford Nuclear Reservation in southeastern Washington state. The Department of Energy activated its Emergency Operations Center following the collapse. Nuclear experts have criticized to storage and safety practices at the site, calling it “the most toxic place in America” and saying it was “an underground Chernobyl waiting to happen.”

  • New nuclear forensics signature discovery capability to help trace origins of plutonium

    Two weeks ago the Department of Homeland Security’s Domestic Nuclear Detection Office (DNDO) joined with partners at the Pacific Northwest National Laboratory (PNNL) to launch the Plutonium Processing Signatures Discovery capability. The new capability, the result of a four-year effort, represents a significant technological advancement in nuclear forensics that will improve our ability to trace the origins of plutonium. Nuclear forensics involves determining where illicit or smuggled radioactive material came from. In the event of a nuclear weapon detonation, knowing where radioactive material came from can help investigators determine who’s responsible.

  • How will the federal government protect nuclear safety in an anti-regulatory climate?

    The Trump administration and congressional Republicans have undertaken a wide-ranging effort to shrink the federal government’s regulatory footprint. Much attention has focused on high-profile targets, such as the Environmental Protection Agency. But this trend also has major implications for other agencies. One example is the U.S. Nuclear Regulatory Commission (NRC), which oversees safety across a complex, privately owned network of nuclear power plants, used fuel storage facilities and other sites related to civilian uses of nuclear energy. The NRC and the system it regulates exemplify what some scholars call a “high reliability organization” – one that cannot be allowed to fail, because the consequences would be grave (two examples of failures of external oversight: Chernobyl in 1986 and Fukushima in 2011). A high reliability organization is not automatically a highly reliable organization. Reliability is an ongoing accomplishment involving continuous learning, sustained vigilance and a strong system of checks and balances. Moving forward in an anti-regulatory climate, with so many complex challenges facing the agency, it is essential to ensure independent leadership, public transparency and adequate resources to support the NRC’s mission.

  • Nextgen robots for nuclear clean-up

    The cost of cleaning up the U.K.’s existing nuclear facilities has been estimated to be between £95 billion, and £219 billion over the next 120 years or so. The harsh conditions within these facilities means that human access is highly restricted and much of the work will need to be completed by robots. Present robotics technology is simply not capable of completing many of the tasks that will be required. A research a consortium to build the next generation of robots that are more durable and perceptive for use in nuclear sites.

  • Declassifying rescued nuclear test films

    The United States conducted 210 atmospheric nuclear tests between 1945 and 1962, with multiple cameras capturing each event at around 2,400 frames per second. But in the decades since, around 10,000 of these films sat idle, scattered across the country in high-security vaults. Not only were they gathering dust, the film material itself was slowly decomposing, bringing the data they contained to the brink of being lost forever. For the past five years, physicists, film experts, archivists, and software developers have been on a mission to hunt down, scan, reanalyze, and declassify these decomposing films. The goals are to preserve the films’ content before it is lost forever, and provide better data to the post-testing-era scientists.

  • “Fishing out” radioactive elements from nuclear waste

    Scientists have revealed how arsenic molecules might be used to “fish out” the most toxic elements from radioactive nuclear waste — a breakthrough that could make the decommissioning industry even safer and more effective. “Nuclear power could potentially produce far less carbon dioxide than fossil fuels, but the long-lived waste it produces is radioactive and needs to be handled appropriately,” one scientists said.

  • Detecting weapons-grade uranium from afar

    It is hard enough to identify nuclear materials when you can directly scan a suspicious suitcase or shipping container. But if you cannot get close? A technique for detecting enriched uranium with lasers could help regulators sniff out illicit nuclear activities from as far as a couple of miles away.

  • Radiation threat detection system successfully tested in Washington, D.C.

    DARPA’s SIGMA program — whose goal is to prevent attacks involving radiological “dirty bombs” and other nuclear threats — concluded its biggest and longest test deployment of vehicle-mounted radiation detectors in Washington, D.C., in February. For approximately seven months starting in July 2016, the fleet of D.C. Fire and Emergency Medical Services ambulances was outfitted with DARPA-developed nuclear and radiological detectors, providing the first city-scale, dynamic, real-time map of background radiation levels throughout the Capital as well as identifying any unusual spikes that could indicate a threat.

  • Preventing nuclear waste seepage

    Nuclear waste is a reality, whether remnants of nuclear weapons or the byproducts of nuclear power plants. While we aren’t at risk of an attack from a giant radioactive lizard, nuclear waste can still pose threats to human health. The best way to safely store and contain nuclear waste is by mixing it into a cement grout and storing it in large concrete vaults. Researchers are testing the permeability of these grout mixtures and in turn, the ability for nuclear materials to eventually flow through the solidified grout and into the environment.

  • System automatically detects cracks in steel components of nuclear power plants

    The United States operates 99 commercial nuclear power plants, which account for about 20 percent of total U.S. electricity generation. Aging can result in cracking, fatigue, embrittlement of metal components, wear, erosion, corrosion and oxidation. Researchers have developed a new automated system which detects cracks in the steel components of nuclear power plants and has been shown to be more accurate than other automated systems.

  • Finding new clues for nuclear waste cleanup

    Technetium-99 is a byproduct of plutonium weapons production and is considered a major U.S. challenge for environmental cleanup. At the Hanford Site nuclear complex in Washington state, there are about 2,000 pounds of the element dispersed within approximately 56 million gallons of nuclear waste in 177 storage tanks. The U.S. Department of Energy is in the process of building a waste treatment plant at Hanford to immobilize hazardous nuclear waste in glass. But researchers have been stymied because not all the technetium-99 is incorporated into the glass and volatilized gas must be recycled back into the melter system.

  • Identifying the right sites for storing radioactive waste

    In 2008, a Swiss government agency identified six regions in Switzerland, approved by the Federal Council, which could be used to store radioactive waste. An EPFL research project has developed a detailed profile of the sites selected to store radioactive waste from Swiss nuclear power plants. The project helped identify the two sites that meet both safety and feasibility requirements.