Grid securityAs Russians hack the U.S. grid, a look at what’s needed to protect it
The U.S. electricity grid is hard to defend because of its enormous size and heavy dependency on digital communication and computerized control software. The number of potential targets is growing as “internet of things” devices, such as smart meters, solar arrays and household batteries, connect to smart grid systems. In late 2015 and again in 2016, Russian hackers shut down parts of Ukraine’s power grid. In March 2018, federal officials warned that Russians had penetrated the computers of multiple U.S. electric utilities and were able to gain access to critical control systems. Four months later, the Wall Street Journal reported that the hackers’ access had included privileges that were sufficient to cause power outages. It’s important for electric utilities, grid operators and vendors to remain vigilant and deploy multiple layers of defense.
The U.S. electricity grid is hard to defend because of its enormous size and heavy dependency on digital communication and computerized control software. The number of potential targets is growing as “internet of things” devices, such as smart meters, solar arrays and household batteries, connect to smart grid systems.
As researchers of grid security, we believe that current security standards mandated by federal regulations provide sufficient protection against observed threats. But recent incidents demonstrate the ongoing challenge of ensuring everyone follows the guidelines, which themselves must change over time to keep up with technological shifts.
The threat is real: In late 2015 and again in 2016, Russian hackers shut down parts of Ukraine’s power grid. In March 2018, federal officials warned that Russians had penetrated the computers of multiple U.S. electric utilities and were able to gain access to critical control systems. Four months later, the Wall Street Journal reported that the hackers’ access had included privileges that were sufficient to cause power outages.
Specific technical details have not yet been made public, so it’s hard to know exactly what the hackers did or gained access to. What has been revealed is that these breaches were accomplished with common hacking techniques, such as sending spearphishing emails to specific employees. Apparently, and reassuringly, the U.S. attacks didn’t involve more advanced techniques seen in the Ukraine incidents, including custom-made software to target specific systems.
In addition, human errors will inevitably lead to mistakes that will weaken the security of some of the thousands of digital devices needed to protect the grid. And more sophisticated attackers may still find and exploit currently unknown vulnerabilities. Therefore, it’s important for electric utilities, grid operators and vendors to remain vigilant and deploy multiple layers of defense.
Major players have some protections
There are two main aspects to grid architecture that need defending in different ways. The first element is the bulk power system, often referred to as the “transmission grid.” It connects high-capacity power plants, transmission wires and substations that collectively generate and transport huge quantities of electricity over hundreds or thousands of miles. The rest of the grid is made up of smaller distribution grids – connected with the bulk power system – delivering electricity to homes and businesses around the country. The strongest standards for protection apply only to the bulk power system; though many distribution systems follow the same guidelines, they remain