ExplosivesChemical Fingerprint for Explosives in Forensic Research
The police frequently encounter explosives in their forensic investigations related to criminal and terrorist activities. Chemical analysis of explosives can yield valuable tactical information for police and counterterrorist units.
The police frequently encounter explosives in their forensic investigations related to criminal and terrorist activities. Chemical analysis of explosives can yield valuable tactical information for police and counterterrorist units. Within the compass of her doctoral research, Karlijn Bezemer has developed a new generation of tools which can be used to not only identify signature properties of explosives and their raw materials but also to enable comparison of explosives. Bezemer, who works at the Netherlands Forensic Institute (NFI), is set to obtain her PhD at the University of Amsterdam(UvA) on Wednesday, 2 September.
In traditional forensic casework, explosives experts focus on matters such as the chemical identification of an explosive. ‘Identifying the type of explosive material isn’t the only important aspect, though,’ Bezemer explains. ‘Increasingly, the Public Prosecution Service is asking the NFI whether there might be a link between two crime scenes (e.g. different attacks on ATMs), or between material found at a crime scene and raw materials found at a suspect’s home. The distinctive chemical profiles of explosives can be used to establish (or refute) commonalities in terms of source, thereby assisting with forensic investigations. If the police don’t have a suspect yet, but tactical information can be derived from the explosive material, this could put them on a suspect’s track.’
Bezemer’s research enables her to cross the boundary from forensic evidence into forensic intelligence. In the future, information obtained through explosives profiling and intelligence could even be used to prevent incidents with explosives from happening. Bezemer has focused her research on three main topics: organic explosives, fireworks, and the detection of firework traces.
Home-Made Explosives
The use of explosives is popular among terrorists. Terrorist attacks often entail the use of organic, home-made explosives. These are relatively straightforward to make and the necessary raw materials are generally easy to acquire. The highly explosive material TATP is commonly used in terrorist attacks, including the attacks on the Stade de France in Paris (2015) and the Manchester Arena (2017). ETN, an organic nitrate ester, is increasingly being used as well. Bezemer made a large number of batches of both explosives. To be clear: she made them in safe conditions and in small quantities under varying synthesis conditions, each time using different processes, under varying conditions and with different raw materials.