NUCLEAR WASTEThe Future of Nuclear Waste: What’s the Plan and Can It Be Safe?

By Lewis Blackburn

Published 10 May 2022

The UK is planning to significantly expand its nuclear capability — from approximately 8 gigawatts (GW) today to 24GW by 2050, which would meet around 25% of the forecast UK energy demand — in an effort to decrease its reliance on carbon-based fossil fuels. New reactors will inevitably mean more radioactive waste. Above-ground nuclear waste storage isn’t a feasible long term plan. What are the alternatives?

The UK is planning to significantly expand its nuclear capability, in an effort to decrease its reliance on carbon-based fossil fuels. The government is aiming to construct up to eight new reactors over the next couple of decades, with a view to increasing power capacity from approximately 8 gigawatts (GW) today to 24GW by 2050. This would meet around 25% of the forecast UK energy demand, compared to around 16% in 2020.

As part of this plan to triple nuclear capacity, also in the works is a £210 million investment for Rolls-Royce to develop and produce a fleet of small modular reactors (SMRs). SMRs are cheaper and can be used in locations which can’t host traditional, larger reactors, so this will give more options for future nuclear sites.

New reactors will inevitably mean more radioactive waste. Nuclear waste decommissioning, as of 2019, was already estimated to cost UK taxpayers £3 billion per year. The vast majority of our waste is held in storage facilities at or near ground level, mostly at Sellafield nuclear waste site in Cumbria, which is so large it has the infrastructure of a small town.

But above-ground nuclear storage isn’t a feasible long term plan – governments, academics and scientists are in agreement that permanent disposal below ground is the only long-term strategy that satisfies security and environmental concerns. So what plans are underway, and can they be delivered safely?

The Way Forward
It has taken many decades of international collaboration between academic and scientific institutions and government regulators to identify a feasible route towards the ultimate disposal of nuclear waste. Previous ideas have included disposing of the extra waste in space, in the sea and below the ocean floor where tectonic plates converge, but each has been shelved as too risky.

Now, almost every nation plans to isolate radioactive waste from the environment in an underground, highly engineered structure called a geological disposal facility (GDF). Some models see GDFs constructed at 1,000 meters underground but 700 meters is more realistic. These facilities will receive low, intermediate or high level nuclear wastes (classified as such according to radioactivity and half-life) and store them safely for up to hundreds of thousands of years.