Ionized plasmas as cheap sterilizer in tough places
built a device capable of safely disinfecting human skin within seconds, killing even drug-resistant bacteria.
“The field of low-temperature plasmas is booming, and this is not just hype. It’s real!” Graves said.
In the study published this month, Graves and his UC Berkeley colleagues showed that plasmas generated by brief sparks in air next to a container of water turned the water about as acidic as vinegar and created a cocktail of highly reactive, ionized molecules — molecules that have lost one or more electrons and thus are eager to react with other molecules. They identified the reactive molecules as hydrogen peroxide and various nitrates and nitrites, all well-known antimicrobials. Nitrates and nitrites have been used for millennia to cure meat, for example.
Graves was puzzled to see, however, that the water was still antimicrobial a week later, even though the peroxide and nitrite concentrations had dropped to nil. This indicated that some other reactive chemical — perhaps a nitrate — remained in the water to kill microbes, he said.
Plasma discharges have been used since the late 1800s to generate ozone for water purification, and some hospitals use low-pressure plasmas to generate hydrogen peroxide to decontaminate surgical instruments. Plasma devices also are used as surgical instruments to remove tissue or coagulate blood. Only recently, however, have low-temperature plasmas been used as disinfectants and for direct medical therapy, said Graves, who recently focused on medical applications of plasmas after working for more than twenty years on low-temperature plasmas of the kind used to etch semiconductors.
“I’m a chemical engineer who applies physics and chemistry to understanding plasmas,” Graves said. “It’s exciting to now look for ways to apply plasmas in medicine.”
Graves’s UC Berkeley coauthors are former post-doctoral fellow Matthew J. Traylor; graduate students Matthew J. Pavlovich and Sharmin Karim; undergraduate Pritha Hait; research associate Yukinori Sakiyama; and chemical engineer Douglas S. Clark, The Warren and Katharine Schlinger Distinguished Professor in Chemical Engineering and the chair of the Department of Chemical and Biomolecular Engineering.
The work on deactivating dangerous and persistent biological molecules was conducted with a group led by Gottlieb Oehrlein, a professor of materials science and engineering at the University of Maryland in College Park.
The research is supported by the U.S. Department of Energy’s Office of Fusion Science Plasma Science Center, the UC Berkeley Blum Center for Developing Economies, and the UC Berkeley Sustainable Products and Solution Program.
— Read more in Matthew J. Traylor et al., “Long-term antibacterial efficacy of air plasma-activated water,” Journal of Physics D: Applied Physics 44, no. 47 (2011) (doi:10.1088/0022-3727/44/47/472001)