FirstNet for emergency communications: Six questions answered

Four years later, the same problems weakened officials’ response to Hurricane Katrina. Most of the early efforts to solve this problem focused on making sure emergency workers’ radios could communicate with each other properly. In the intervening years, though, first responders have increasingly used smartphones, tablets and computers. They need to do more than talk; they need to share data among those devices – such as building layouts, possible environmental hazards, information about who and where victims might be and even basic details like local weather conditions.

Another change over time is our understanding of who first responders are. It’s not just police, firefighters and emergency medical personnel. Other public agencies also are involved from the very early stages of a crisis, including transit agencies and environmental protection workers. Private companies are needed too, handling damage or interruptions to utilities services such as electricity, water, gas, telephone, cable TV and cellular service.

All of those groups need wireless communications at or near a disaster site. At the moment, they must compete with the general public: People inside the disaster area are often trying to seek help by calling 911 or texting friends or relatives. They may even post videos and photos of what is happening to social media sites. Loved ones elsewhere also flood communications networks, checking in as “safe” and trying to contact people they know who might be affected, to make sure they’re OK too. After the 2013 Boston Marathon bombing, for example, all the major cellular networks got overloaded by the number of people trying to make calls and send texts at the same time. (This even happens during nonemergency situations, such as concerts and sporting events.)

What’s more, many mobile broadband companies limit the amount of high-speed data a user can consume in a given month, either cutting off traffic or slowing it down significantly. But a first responder using a camera-equipped drone to inspect, say, a dam that might be breached needs unlimited high-speed communications to get real-time information that can protect both first responders and the public.

Who will pay for it?
The Federal Communications Commission has been rearranging the frequencies television channels use to broadcast their signals, making room in the electromagnetic spectrum for additional wireless broadband services. The agency recently auctioned off the rights to use some of those frequencies to 50 winning bidders including T-Mobile, Dish and Comcast, raising $19.8 billion.

Of that, $6 billion will be paid to the AT&T group, which will spend that money, plus an additional $40 billion, to build and operate the network.

Money will also come from payments from emergency response agencies, which will have to buy a FirstNet service plan for each device, at prices expected to be similar to today’s mobile pricing. That revenue will also help fund the network, cover the companies’ investments and help generate enough of a profit that the AT&T group has promised to repay the $6 billion to the U.S. Treasury after the FirstNet contract expires in twenty-five years.

What will happen when there is not an emergency?
When there is no emergency in an area, the bandwidth on the FirstNet network in that area will be available to AT&T to sell to private or corporate customers. This revenue, in addition to that from the first responder users themselves, is expected to pay for FirstNet.

What do other countries do about this problem?
Because of the close relationship between the U.S. and Canadian broadband services, Canada is creating a Public Safety Broadband Network using the same frequency spectrum and protocols as the U.S. so that agencies on both sides of the border can connect to each other easily.

The U.K. is building an Emergency Services Network, expected to begin partial operation near the end of 2017. South Korea expects to complete its public safety wireless network in time to be used during the 2018 Winter Olympics. Several other countries have networks that are in various stages of design and construction.

FirstNet is supposed to last twenty-five years. What does that mean, and how will it happen?
As broadband wireless technology improves, our devices and networks will too, including FirstNet.

The effort is also expected to promote technological innovations. Already, some of the technical solutions that serve first responders, such as the ability for devices to connect directly to each other, have been incorporated into LTE standards. Some apps developed for first responders may also release versions useful to others.

It’s hard to know what we’ll need in twenty-five years – just as twenty-five years ago, it would have been very hard to envision the technical details of today’s interconnected world. But building FirstNet will help protect and serve both first responders and the public during emergencies – and it will enhance communications in times of peace and prosperity.

Ladimer Nagurney is Professor of Electrical, Computer and Biomedical Engineering, University of Hartford. Anna Nagurney is John F. Smith Memorial Professor of Operations Management, University of Massachusetts Amherst. This article is published courtesy of The Conversation (under Creative Commons-Attribution / No derivative).