• Improving the Safety of Next-Generation Reactors

    On 11 March 2011, in response to a massive earthquake, the nuclear reactors at Fukushima-Daiichi automatically shut down, as designed. The emergency systems, which would have helped maintain the necessary cooling of the core, were destroyed by the subsequent tsunami. Because the reactor could no longer cool itself, the core overheated, resulting in a severe nuclear meltdown. Since then, reactors have improved exponentially in terms of safety, sustainability and efficiency. Unlike the light-water reactors at Fukushima, which had liquid coolant and uranium fuel, the current generation of reactors has a variety of coolant options, including molten-salt mixtures, supercritical water and even gases like helium.

  • Nuclear Micro-Reactors

    The idea of a nuclear power plant today evokes images of large cooling towers and expansive, warehouse-size buildings. Such facilities generate about a fifth of electricity in the United States without emitting greenhouse gases. A different picture of nuclear energy is emerging, however, in the form of micro-reactors that could fit on the back of a truck or inside a rocket to space. The promise of these micro-reactors is to provide the same reliable, zero-carbon power in remote settings or to support electrical power grid recovery.

  • U.S. Should Make Monitoring and Detecting Nuclear Threats a Higher National Priority

    To address current and evolving nuclear threats, the U.S. needs a higher prioritized and more integrated program for monitoring, detecting, and verifying nuclear test explosions, nuclear weapon stockpiles, and the production of fissile material, says a new report from the National Academies of Sciences.

  • Strengthening Nuclear Storage Research

    Today, nuclear power utilities store over 80,000 metric tons of spent nuclear fuel across the nation. Since the fuel will remain in dry storage longer than was expected, scientists are working to better understand exactly how the fuel behaves under extended storage conditions, how the canisters age, and the forces the two would undergo when shipped and stored for long periods.

  • Retaining Knowledge of Nuclear Waste Management

    Sandia National Laboratories have begun their second year of a project to capture important, hard-to-explain nuclear waste management knowledge from retirement-age employees to help new employees get up to speed faster. The project has experts share their experience with and knowledge of storage, transportation, and disposal with next generation scientists.

  • Revolutionary Nuclear Heating Plant

    A team of scientists has come up with a radical solution to heat cities using spent nuclear rods, which they say is cost-effective and greener than natural gas. As the EU moves away from coal, many are interested.

  • The Lessons and Legacy of the Fukushima Nuclear Disaster

    A decade after a powerful earthquake and tsunami set off the Fukushima Daiichi nuclear meltdown in Japan, Stanford experts discuss revelations about radiation from the disaster, advances in earthquake science related to the event and how its devastating impact has influenced strategies for tsunami defense and local warning systems.

  • How Fukushima Triggered Germany's Nuclear Phaseout

    The Fukushima disaster shook the belief in safe nuclear power to its core. For Germany, it marked a historic turning point for environmentalism.

  • Fukushima: Ten Years On from the Disaster, Was Japan’s Response Right?

    How should a government react when confronted by clear evidence of radioactive material being released into the environment? We set out to determine how best to respond to a severe nuclear accident using a science-led approach. Could we, by examining the evidence, come up with better policy prescriptions than the emerging playbook deployed in Ukraine and Japan? Together with colleagues, we used research methods from statistics, meteorology, reactor physics, radiation science and economics and arrived at a surprising conclusion.

  • The Fukushima Disaster Didn’t Scare the World Off Nuclear Power

    Ten years ago, three nuclear reactors melted down at the Fukushima Daiichi power plant in Japan, producing the worst nuclear accident since the 1986 Chernobyl disaster.The disaster, caused by an earthquake-triggered tsunami, pushed Japan and a few other countries to rethink their use of nuclear energy. But elsewhere, it didn’t spur major changes. Instead, experts say, climate change could force a major reckoning with how the world uses nuclear power.

  • Radiation Knows No Bounds—but Builds Strong Bonds Between Two Communities

    PNNL’s detection prowess harkens back to early studies at Hanford, a former plutonium production site near the laboratory. This work gave rise to PNNL’s expertise in radiochemistry, nuclear physics, and the ability to sense, measure, and identify radioactivity at increasingly lower levels. PNNL’s scientific studies during Hanford operations also built expertise in predicting how contaminants would move in the environment and in estimating radiation releases and exposures.

  • Ten Years after Fukushima, Safety Is Still Nuclear Power’s Greatest Challenge

    Ten years ago, on March 11, 2011, a tsunami destroyed the Fukushima Daiichi Nuclear Power Station and released radioactive materials over a large area. The accident triggered widespread evacuations, large economic losses and the eventual shutdown of all nuclear power plants in Japan. A decade later, the nuclear industry has yet to fully address safety concerns that Fukushima exposed. This is worrying, because Fukushima was a man-made accident, triggered by natural hazards, that could and should have been avoided.

  • Want Cheaper Nuclear Energy? Turn the Design Process into a Game

    Nuclear energy provides more carbon-free electricity in the United States than solar and wind combined, making it a key player in the fight against climate change. But the U.S. nuclear fleet is aging, and operators are under pressure to streamline their operations to compete with coal- and gas-fired plants. Researchers show that deep reinforcement learning can be used to design more efficient nuclear reactors.

  • Nuclear Waste Storage Canisters to Be Tested

    Three 22.5-ton, 16.5-feet-long stainless-steel storage canisters, with heaters and instrumentation to simulate nuclear waste so researchers can study their durability, will be tested at Sandia National Lab. The three canisters have never contained any nuclear materials. They will be used to study how much salt gathers on canisters over time. Sandia will also study the potential for cracks caused by salt- and stress-induced corrosion with additional canisters that will be delivered during the next stage of the project.

  • Novel Chemical Process a First Step to Making Nuclear Fuel with Fire

    Uranium dioxide, a radioactive actinide oxide, is the most widely used nuclear fuel in today’s nuclear power plants. A new “combustion synthesis” process recently established for lanthanide metals—non-radioactive and positioned one row above actinides on the periodic table—could be a guide for the production of safe, sustainable nuclear fuels.