Commercial use of invisibility cloak now within sight

Berkeley’s Nanoscale Science and Engineering Center, funded by the National Science Foundation (NSF), and head of the research teams that developed the two new metamaterials. “Both bring us a major step closer to the development of practical applications for metamaterials.” Zhang is also a faculty scientist in the Material Sciences Division at the Lawrence Berkeley National Laboratory.

Humans view the world through the narrow band of electromagnetic radiation known as visible light, with wavelengths ranging from 400 nanometers (violet and purple light), to 700 nanometers (deep red light). Infrared light wavelengths are longer, measuring from about 750 nanometers to 1 millimeter (a human hair is about 100,000 nanometers in diameter). For a metamaterial to achieve negative refraction, its structural array must be smaller than the electromagnetic wavelength being used. Not surprisingly, there has been more success in manipulating wavelengths in the longer microwave band, which can measure 1 millimeter up to 30 centimeters long.

In the Nature paper, the UC Berkeley researchers stacked together alternating layers of silver and non-conducting magnesium fluoride, and cut nanoscale-sized fishnet patterns into the layers to create a bulk optical metamaterial. At wavelengths as short as 1500 nanometers, the near-infrared light range, researchers measured a negative index of refraction. Jason Valentine, UC Berkeley graduate student and co-lead author of the Nature paper, explained that each pair of conducting and non-conducting layers forms a circuit, or current loop. Stacking the alternating layers together creates a series of circuits that respond together in opposition to that of the magnetic field from the incoming light.

Valentine also noted that both materials achieve negative refraction while minimizing the amount of energy that is absorbed or “lost” as light passes through them. In the case of the “fishnet” material described in Nature, the strongly interacting nanocircuits allow the light to pass through the material and expend less energy moving through the metal layers. “Natural materials do not respond to the magnetic field of light, but the metamaterial we created here does,” said Valentine. “It is the first bulk material that can be described as having optical magnetism, so both the electrical and magnetic fields in a light wave move backward in the material.”

The metamaterial described in the Science paper takes another approach to the goal of bending light backwards. It is composed of silver nanowires grown inside porous aluminum oxide. Although