BiometricsInternal fingerprint sensor enables more accurate ID

Published 21 October 2015

In the 1971 film “Diamonds are Forever,” British secret agent James Bond uses fake fingerprints as part of a ploy to assume the identity of a diamond smuggler. At the time, sham prints were purely a futuristic bit of Bond gadgetry, but technology has since caught up. Quickly detecting “internal fingerprints” and sweat pores could make fingerprint sensors more reliable and less likely to be tricked by fake fingerprints.

In the 1971 film Diamonds are Forever, British secret agent James Bond uses fake fingerprints as part of a ploy to assume the identity of a diamond smuggler. At the time, sham prints were purely a futuristic bit of Bond gadgetry, but technology has since caught up.

In 2002, the Japanese cryptographer Tsutomu Matsumoto showed that imitation fingerprints made cheaply from gelatin, a main component of gummy sweets, could trick up to 80 percent of standard fingerprint sensors. The sensors also sometimes fail to recognize legitimate prints when the finger being scanned is dirty, worn, scarred, or too wet or dry.

The Optical Society (OPA) reports that now scientists from The Langevin Institute, Paris, France, have constructed a new fingerprint imaging system that peers inside the finger to take a picture — a more reliable and secure way of identifying individuals. Importantly, the device is also simpler, faster, and cheaper than other technology used previously to image inside fingers. The researchers report their results in the journal Biomedical Optics Express, from the Optical Society (OSA).

In the past years, the use of fingerprint sensors has expanded greatly beyond the field of forensics. Far from just being used for border security or passport registration, current uses of these sensors allows access to mobile phones, computers and even gym facilities,” said Egidijus Auksorius, postdoctoral researcher, The Langevin Institute.

Despite the widespread use of commercial fingerprint sensors, problems with the devices persist, Auksorius said, including up to 5 percent of the population having difficulties using the sensors because their fingerprints are flattened from old age or damaged by routine manual work or sports such as rock climbing. Additionally, people attempting to escape identification might deliberately thwart the sensors by rubbing out their fingerprints, and the systems can be tricked by fake prints, as was demonstrated by Matsumoto and others.

To combat these problems Auksorius worked with Claude Boccara, a professor who specializes in scientific instruments at The Langevin Institute, to develop a new “internal fingerprint” sensor.

Most optical fingerprint sensors today produce images by reflecting light from areas where the skin does not come in contact with a glass plate, a technique that captures details from only the very top layer of skin. In contrast, Auksorius and Boccara’s device images the “internal fingerprints,” which have the same pattern as external fingerprints, but are about half a millimeter below the skin’s surface.

In fact, the internal fingerprints serve as