Gene EditingZombie Apocalypse? How Gene Editing Could Be Used as a Weapon – and What to Do About It
There is a scarier scenario that a repeat of the COVID-1 pandemic: What if the threat wasn’t COVID-19, but a gene-edited pathogen designed to turn us into zombies – ghost-like, agitated creatures with little awareness of our surroundings? With recent advances in gene editing, it may be possible for bioterrorists to design viruses capable of altering our behavior, spreading such a disease and ultimately killing us. And chances are we still wouldn’t be sufficiently prepared to deal with it.
It has been over a year since the World Health Organization (WHO) declared COVID-19 a pandemic. And perhaps the most important lesson is that we were completely unprepared to face the debilitating virus.
This raises some scary thoughts. What if the threat wasn’t COVID-19, but a gene-edited pathogen designed to turn us into zombies – ghost-like, agitated creatures with little awareness of our surroundings? With recent advances in gene editing, it may be possible for bioterrorists to design viruses capable of altering our behavior, spreading such a disease and ultimately killing us. And chances are we still wouldn’t be sufficiently prepared to deal with it.
A zombie apocalypse may sound far-fetched, reserved for the annals of graphic novels, immersive gaming experiences and popular culture. But there are examples of “zombification” in nature. Perhaps the most well known is rabies, which can cause aggression and hallucination and is almost always fatal once symptoms appear.
But there are others. A recently discovered kind of wasp, for example, can turn a particular species of spider (Anelosimus eximius) into “zombies” by laying eggs on their abdomen. The resulting larvae then attaches itself to the spider, feeding on it, while the spider, once a social individual, leaves the colony and prepares to die alone. Other zombification examples from nature include the African sleeping sickness, a fatal neurological condition created by insect-borne parasites, and the Ophiocordyceps unilateralis fungus, which changes the behaviour of carpenter ants before killing them and sprouting out of their heads.
Weaponizing Pathogens
Last year, the Nobel Prize in Chemistry recognized the development of a type of genetic scissors called CRISPR-Cas9. Interest in this technology has been simmering for a while, with equal doses of excitement and fear. Because of its ability to edit the human genome with unprecedented precision, replacing a single letter in the DNA, CRISPR has already proven itself useful in treating genetic conditions such as sickle cell disease, beta thalassemia, and many others.
But CRISPR-Cas9 could theoretically also be used for darker purposes, such as bioterrorism. It could alter pathogens to make them more transmissible or fatal. Alternatively, it could turn a non-pathogen, such as a harmless microbe, into an aggressive virus. The technique may even be able to alter a virus to make it dangerous for a larger range of species than it currently infects, or make it resistant to antibiotics or antivirals.