Scientists Seek to Invent a Safe, Reliable, and Cheap Battery for Electricity Grids

Also, the lead in them is toxic. Of all lead produced globally, 85 percent goes into lead-acid batteries. Although new batteries mostly use lead from recycled ones, in many countries the recycling process relies on techniques that pollute the environment and hurt human health. One in three children suffer from lead poisoning globally, according to a 2020 UNICEF report, with much of the suffering in developing economies.

With such catastrophes in mind, the research team prioritizes environmental justice, as well as the vision of sustainable, affordable, and secure energy for all people. “We hope our inventions may someday benefit all of humanity,” said Cui.

The new research project aims to develop a new kind of aqueous battery, one that is environmentally safe, has higher energy density than lead-acid batteries, and costs one-tenth that of lithium-ion batteries today. The group plans to keep costs for this future technology low by using cheaper raw materials, simpler electronics, and new, efficient manufacturing techniques. The pursued technology is also expected to be safer, and to create batteries that charge and discharge quickly.

However, “the barriers to such a new aqueous battery have stymied inventors for years,” said the project’s chief scientist, Linda Nazar, a professor of chemistry at the University of Waterloo in Ontario, Canada. Nazar has developed new materials for energy storage and conversion for the past 20 years, including aqueous batteries. “In addition to stubbornly low voltage and energy density, water can corrode battery materials, become the source of undesirable side reactions, and the cells can fail after just hundreds of charge-discharge cycles under demanding practical conditions.”

The Aqueous Battery Consortium, which will be administered by Stanford’s Precourt Institute for Energy, hopes to overcome all these challenges and, in so doing, advance battery technology broadly. The team consists of 31 leading battery scientists, engineers, and physicists from 12 universities in North America, as well as from SLAC, the U.S. Army Research Lab, and the U.S. Naval Research Lab.

Project Organization
The 31 co-principal investigators and the much larger number of students and postdoctoral scholars working with the investigators are organized into six teams working on broad research aims and three teams working on challenges that cut across those goals. The research Aims cover the electrolyte, both electrodes, electrolyte/electrode interface, corrosion, and overall device architecture. The three Crosscutting Theme teams will work on materials design and synthesis, coordinated theory and simulation, and characterization of prototype devices in operation.

To ensure collaboration and interdisciplinary thinking across the project, each researcher is on at least one of the six Aims teams and at least one of the Crosscutting Theme teams.

“Our ambitious goals can be met only by a well-integrated team of experts working across disciplines, who encourage each other to think from fresh angles and with novel viewpoints,” said Johanna Nelson Weker, the Aqueous Battery Consortium’s assistant director and lead scientist in SLAC’s Stanford Synchrotron Radiation Lightsource division.

“One of the teams I’m on includes a couple of physicists, a professor of chemistry, and a professor of mechanical engineering, among other disciplines,” said Nelson Weker, “but all the researchers in the project have done much work on energy storage.”

Regular meetings of all consortium members and participation in various scientific forums should help create a large intellectual community of energy storage researchers.  The consortium’s leaders hope this community will include not just the co-principal investigators, but also the scores of graduate students and postdoctoral scholars who will perform much of the research, and other battery scientists around the world. The researchers hope the Aqueous Battery Consortium will become a dynamic center for all aqueous battery research – not just its research – domestically and worldwide.

Management and Oversight
The Aqueous Battery Consortium’s chief operations officer is Steve Eglash, director of the Applied Energy Division and interim chief research officer at SLAC. He is responsible for the organizational and administrative leadership of the project, including financial and personnel management, tracking and reporting research progress to the Department of Energy, environmental health and safety, and relationships with external partners.

“Our ambitious goals can be met only by a well-integrated team of experts working across disciplines, who encourage each other to think from fresh angles and with novel viewpoints,” said Johanna Nelson Weker, the Aqueous Battery Consortium’s assistant director and lead scientist in SLAC’s Stanford Synchrotron Radiation Lightsource division.

“One of the teams I’m on includes a couple of physicists, a professor of chemistry, and a professor of mechanical engineering, among other disciplines,” said Nelson Weker, “but all the researchers in the project have done much work on energy storage.”

Regular meetings of all consortium members and participation in various scientific forums should help create a large intellectual community of energy storage researchers.  The consortium’s leaders hope this community will include not just the co-principal investigators, but also the scores of graduate students and postdoctoral scholars who will perform much of the research, and other battery scientists around the world. The researchers hope the Aqueous Battery Consortium will become a dynamic center for all aqueous battery research – not just its research – domestically and worldwide.

Management and oOversight
The Aqueous Battery Consortium’s chief operations officer is Steve Eglash, director of the Applied Energy Division and interim chief research officer at SLAC. He is responsible for the organizational and administrative leadership of the project, including financial and personnel management, tracking and reporting research progress to the Department of Energy, environmental health and safety, and relationships with external partners.