AIRFIELD SAFETYMaking Airfield Assessments Automatic, Remote, and Safe

By Zach Winn

Published 13 March 2025

U.S. Air Force engineer and PhD student Randall Pietersen is using AI and next-generation imaging technology to detect pavement damage and unexploded munitions.

In 2022, Randall Pietersen, a civil engineer in the U.S. Air Force, set out on a training mission to assess damage at an airfield runway, practicing “base recovery” protocol after a simulated attack. For hours, his team walked over the area in chemical protection gear, radioing in geocoordinates as they documented damage and looked for threats like unexploded munitions.

The work is standard for all Air Force engineers before they deploy, but it held special significance for Pietersen, who has spent the last five years developing faster, safer approaches for assessing airfields as a master’s student and now a PhD candidate and MathWorks Fellow at MIT. For Pietersen, the time-intensive, painstaking, and potentially dangerous work underscored the potential for his research to enable remote airfield assessments.

“That experience was really eye-opening,” Pietersen says. “We’ve been told for almost a decade that a new, drone-based system is in the works, but it is still limited by an inability to identify unexploded ordnances; from the air, they look too much like rocks or debris. Even ultra-high-resolution cameras just don’t perform well enough. Rapid and remote airfield assessment is not the standard practice yet. We’re still only prepared to do this on foot, and that’s where my research comes in.”

Pietersen’s goal is to create drone-based automated systems for assessing airfield damage and detecting unexploded munitions. This has taken him down a number of research paths, from deep learning to small uncrewed aerial systems to “hyperspectral” imaging, which captures passive electromagnetic radiation across a broad spectrum of wavelengths. Hyperspectral imaging is getting cheaper, faster, and more durable, which could make Pietersen’s research increasingly useful in a range of applications including agriculture, emergency response, mining, and building assessments.

Finding Computer Science and Community
Growing up in a suburb of Sacramento, California, Pietersen gravitated toward math and physics in school. But he was also a cross country athlete and an Eagle Scout, and he wanted a way to put his interests together.

“I liked the multifaceted challenge the Air Force Academy presented,” Pietersen says. “My family doesn’t have a history of serving, but the recruiters talked about the holistic education, where academics were one part, but so was athletic fitness and leadership. That well-rounded approach to the college experience appealed to me.”