Energy futureMIT awards more than $1.6 million to fund research projects
MIT Energy Initiative unveils first seed grant winners for energy research; innovative research projects include harnessing microbes, developing new materials, curbing pollution, harvesting wasted watts, and much more
If we want to get a sense of what interesting scientific research we should keep an eye on, there are worse ways to do so than follow MIT’s grant making. From harnessing microbes to developing new materials, from curbing pollution to harvesting wasted watts, an impressive range of MIT research projects in solar technology, climate change impacts, and power transmission were among those chosen to receive more than $1.6 million in the MIT Energy Initiative’s (MITEI) first round of campus seed grants. Investors should be especially interested: The grants, which range from $30,000 to $150,000 and last anywhere from one semester to two years, are intended to help launch new or early stage projects which, it is hoped, will then produce enough results to be able to secure outside funding for further development. In all, eleven projects were selected to receive major grants totaling some $1.4 million, while six other projects proposed by junior faculty members were chosen for shorter-term grants.
MITEI selected the winners from fifty-four proposals submitted by members of all of MIT’s departments, and multidisciplinary projects were especially encouraged. MITEI director Ernest Moniz said he and his colleagues were pleased at the “overwhelming response” after expecting fewer than twenty proposals. “The results of our call for proposals were so impressive, we were able to almost double the funding,” Moniz said, by getting additional money from the Chesonis Foundation, MITEI’s own funding, the MIT-Singapore programs, the deans of science and engineering, and private donors.
* Among the novel projects selected is one aimed at doing basic research that could lead to a whole new approach to the production of biofuels. Sallie “Penny” Chisholm, professor of environmental studies, will conduct a study of Prochlorococcus, the smallest and the most abundant creature capable of photosynthesis. The hope is that this ubiquitous marine microbe could someday be used as a way of harnessing the power of sunlight to grow biofuels on an industrial scale.
* Another solar-energy project, headed by Tonio Buonassisi, assistant professor of mechanical engineering, and Gerbrand Ceder, professor of materials science and engineering, will explore novel materials for making solar cells, focusing on materials that are abundant and could be easily scaled up to widespread production and that could produce low-cost, extremely efficient photovoltaic panels.
* One team, pairing two economists and an engineer, will study the health effects of energy use in India — which largely consists of the very smoky indoor combustion of wood and cow dung — and will explore alternatives that could mitigate these effects. Others will look at various approaches to curbing global warming: Harnessing collective intelligence to develop solutions, using the model of massive, open collaborative projects like Wikipedia and Linux; using microbially produced enzymes to control pollutants and greenhouse gases—and maybe produce fuel in the process; and investigating how microbial life will respond if carbon sequestration becomes a major tool for limiting carbon emissions. Some of the grants will be used to study materials and technologies that could improve electric power systems. These include superconducting transmission systems and using nanotubes to produce improved ultracapacitors for energy storage. Another project, colorfully titled “No Watt Left Behind,” will develop new technology for minimizing waste in the use of electricity, for example by using fluorescent lamps to detect the presence of people and adjust lighting accordingly.
In addition to the major seed grants, junior faculty were awarded smaller Ignition grants, which are “a way to kick-start new research for them in the energy area,” said Robert Armstrong, deputy director of MITEI. These grants included projects aimed at designing more energy-efficient buildings, new thermoelectric materials for more efficient heating and cooling, and improving the longevity of advanced nuclear power plants. “We had outstanding submissions both in terms of the innovative ideas, and in terms of the variety of faculty who applied,” Armstrong said. “This has helped us identify new ideas and new people to involve in MITEI as well as valuable collaborations we can foster across campus.” New grants will be awarded twice each year, and over the course of the next five years the program will cover the whole spectrum of energy-related research, including environmental research related to energy production, delivery and use, and research that involves not only technology but also science, policy and systems design issues.